diffusion in a simplified random lorentz gas
play

Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha - PowerPoint PPT Presentation

Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha 1Laboratoire de Probabilit es et mod` eles al eatoires. Universit e Paris Diderot (Paris 7). Mathematical Statistical Physics in Kyoto 2013. fsu-logo Goal : Introduce


  1. Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha¨ 1Laboratoire de Probabilit´ es et mod` eles al´ eatoires. Universit´ e Paris Diderot (Paris 7). Mathematical Statistical Physics in Kyoto 2013. fsu-logo

  2. Goal : Introduce a new model designed to derive macroscopic diffusion from a deterministic (but with random parameters) microscopic dynamics in a “‘typical” sense. RL Macroscopic diffusion from a Hamilton-like dynamics Journal of Statistical Physics, Volume 151 (5),861-869 (2013) fsu-logo

  3. Diffusion of particles : Fick’s law fsu-logo

  4. From microscopic dynamics to macroscopic dynamics :Fick’s law Fick’s Law :  ∂ t ρ ( x, t ) = ∂ x ( D ( ρ ) ∂ x ρ ( x, t )) , t > 0 , x ∈ [0 , 1] ∂ x ρ (0 , t ) = ∂ x ρ (1 , t ) = 0 , t > 0 fsu-logo

  5. Hamiltonian dynamics : two facts/objections Loschmidt : Microscopic dynamics is reversible, macroscopic dynamics is not. Zermelo : Hamiltonian dynamics in a bounded domain is almost surely recurrent. Theorem : Poincar´ e recurrence theorem Let ( X, A , µ ) a measure space such that µ ( X ) < ∞ and f : X → X a map such that for any A ∈ A , µ ( f − 1 ( A )) = µ ( A ), then ∀ B ∈ A , µ [ { x ∈ B : ∃ N, ∀ n ≥ N, f n ( x ) / ∈ B } ] = 0 fsu-logo

  6. Derivation of macroscopic evolution equations :models Periodic Lorentz gas Bunimovich-Sinai shows that for large time the rescaled motion of a test particle is diffusive. fsu-logo

  7. Derivation of macroscopic evolution equations :models Random Lorentz gas fsu-logo

  8. Derivation of macroscopic evolution equations :models Ehrenfest random wind-tree model fsu-logo

  9. The model fsu-logo

  10. The model k i Y C N = R i = { ( k, i ) : k ∈ { 1 , . . . , R } , i ∈ {− N, . . . , N }} . i ∈ Λ N fsu-logo Scatterers : variables ξ ( k, i ) ∈ { 0 , 1 }

  11. The model k i Dynamical system τ : C N → C N : τ ( k, i ) = J ( k, i )( k + 1 , i + 1) + J ( k, i − 1)( k + 1 , i − 1) + (1 − J ( k, i ))(1 − J ( k, i − 1))( k + 1 , i ) J ( k, i ) = ξ ( k, i )(1 − ξ ( k, i − 1))(1 − ξ ( k, i + 1)) fsu-logo

  12. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  13. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  14. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  15. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  16. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  17. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  18. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  19. Evolution of occupation variables k k i i Occupation variable of site ( k, i ) ∈ C N : σ ( k, i ) ∈ { 0 , 1 } . Evolution : σ ( k, i ; t ) = σ ( τ − t ( k, i ); 0) , t ∈ N ∗ or recursion : σ ( k, i ; t ) = (1 − J ( k − 1 , i ))(1 − J ( k − 1 , i − 1)) σ ( k − 1 , i ; t − 1) + J ( k − 1 , i − 1) σ ( k − 1 , i − 1; t − 1) + J ( k − 1 , i ) σ ( k − 1 , i + 1; t − 1) . σ ( · ; t ) is permutation of initial occupation variables σ ( · ; 0). fsu-logo

  20. Facts Dynamics is conservative . τ is injective, thus invertible (reversible). Every point of C N is periodic and R ≤ T ( x ) ≤ R (2 N + 1) , ∀ x ∈ C N . fsu-logo

  21. Interactions with no diffusion fsu-logo

  22. Interactions with no diffusion fsu-logo

  23. Interactions with no diffusion fsu-logo

  24. Interactions with no diffusion fsu-logo

  25. Interactions with no diffusion fsu-logo

  26. Interactions with no diffusion fsu-logo

  27. Interactions with no diffusion fsu-logo

  28. Interactions with no diffusion fsu-logo

  29. Interactions with no diffusion fsu-logo

  30. Diffusion fsu-logo

  31. Diffusion fsu-logo

  32. Diffusion fsu-logo

  33. Diffusion fsu-logo

  34. Diffusion fsu-logo

  35. Diffusion fsu-logo

  36. Diffusion fsu-logo

  37. Diffusion fsu-logo

  38. Diffusion fsu-logo

  39. Diffusion Macroscopic quantity of interest : empirical density of the rings R ρ R ( i, t ) = 1 X σ ( k, i, t ) R k =1 What’s diffusion in this context ? For a given configuration of scatterers, does diffusion occur ? Sometimes yes, sometimes no. How often ? fsu-logo

  40. Diffusion in discrete time and space Let 0 < µ < 1, and the discrete time evolution system for t ∈ N : ρ ( i, t + 1) = ρ ( i, t ) + µ (1 − µ ) 2 [ ρ ( i − 1 , t ) + ρ ( i + 1 , t ) − 2 ρ ( i, t )] 8 > > > < ρ ( − N, t + 1) = ρ ( − N, t ) + µ (1 − µ )[ ρ ( − N + 1 , t ) − ρ ( − N, t )] > > > : ρ ( N, t + 1) = ρ ( N, t ) + µ (1 − µ )[ ρ ( N − 1 , t ) − ρ ( N, t )] Proposition Let { h ( i ) > 0 : i ∈ Λ N } such that P i ∈ Λ N h ( i ) = h , and ρ h such that h ρ h ( i ) = 2 N +1 , ∀ i ∈ Λ N then there exists a unique solution ρ such that ρ ( i, 0) = h ( i ) P i ∈ Λ N ρ ( i, t ) = h , ∀ t ∈ N . ∃ c > 0 such that t →∞ e ct || ρ ( · , t ) − ρ h || = 0 lim fsu-logo

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend