diffusion in a simplified random lorentz gas
play

Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha - PowerPoint PPT Presentation

Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha 1Laboratoire de Probabilit es et mod` eles al eatoires. Universit e Paris Diderot (Paris 7). University of Warwick, June 13th 2013. fsu-logo Diffusion of particles :


  1. Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha¨ 1Laboratoire de Probabilit´ es et mod` eles al´ eatoires. Universit´ e Paris Diderot (Paris 7). University of Warwick, June 13th 2013. fsu-logo

  2. Diffusion of particles : Fick’s law fsu-logo

  3. From microscopic dynamics to macroscopic dynamics :Fick’s law Fick’s Law :  ∂ t ρ ( x, t ) = ∂ x ( D ( ρ ) ∂ x ρ ( x, t )) , t > 0 , x ∈ [0 , 1] ∂ x ρ (0 , t ) = ∂ x ρ (1 , t ) = 0 , t > 0 fsu-logo

  4. Hamiltonian dynamics : two facts-objections Loschmidt : Microscopic dynamics is reversible, macroscopic dynamics is not. Zermelo : Hamiltonian dynamics in a bounded domain is almost surely recurrent. Theorem : Poincar´ e recurrence theorem Let ( X, A , µ ) a measure space such that µ ( X ) < ∞ and f : X → X a map such that for any A ∈ A , µ ( f − 1 ( A )) = µ ( A ), then ∀ B ∈ A , µ [ { x ∈ B : ∃ N, ∀ n ≥ N, f n ( x ) / ∈ B } ] = 0 fsu-logo

  5. Derivation of macroscopic evolution equations :models Random Lorentz gas Wind-tree model Figure: by Cecconi, Cencini, Vulpiani +Kac ring model fsu-logo

  6. The model fsu-logo

  7. The model k i Y C N = R i = { ( k, i ) : k ∈ { 1 , . . . , R } , i ∈ {− N, . . . , N }} . i ∈ Λ N fsu-logo Scatterers : variables ξ ( k, i ) ∈ { 0 , 1 }

  8. The model k i Dynamical system τ : C N → C N : τ ( k, i ) = J ( k, i )( k + 1 , i + 1) + J ( k, i − 1)( k + 1 , i − 1) + (1 − J ( k, i ))(1 − J ( k, i − 1))( k + 1 , i ) fsu-logo J ( k, i ) = ξ ( k, i )(1 − ξ ( k, i − 1))(1 − ξ ( k, i + 1))

  9. Evolution of occupation variables Occupation variable of site ( k, i ) ∈ C N : σ ( k, i ) ∈ { 0 , 1 } . Evolution : σ ( k, i ; t ) = σ ( τ − t ( k, i ); 0) , t ∈ N ∗ or recursion : σ ( k, i ; t ) = (1 − J ( k − 1 , i ))(1 − J ( k − 1 , i − 1)) σ ( k − 1 , i ; t − 1) + J ( k − 1 , i − 1) σ ( k − 1 , i − 1; t − 1) + J ( k − 1 , i ) σ ( k − 1 , i + 1; t − 1) . σ ( · ; t ) is permutation of initial occupation variables σ ( · ; 0). Proposition Dynamics is conservative . τ is injective, thus invertible (reversible). Every point of C N is periodic and R ≤ T ( x ) ≤ R (2 N + 1) , ∀ x ∈ C N . fsu-logo

  10. Interactions with no diffusion fsu-logo

  11. Interactions with no diffusion fsu-logo

  12. Interactions with no diffusion fsu-logo

  13. Interactions with no diffusion fsu-logo

  14. Interactions with no diffusion fsu-logo

  15. Interactions with no diffusion fsu-logo

  16. Interactions with no diffusion fsu-logo

  17. Interactions with no diffusion fsu-logo

  18. Interactions with no diffusion fsu-logo

  19. Diffusion fsu-logo

  20. Diffusion fsu-logo

  21. Diffusion fsu-logo

  22. Diffusion fsu-logo

  23. Diffusion fsu-logo

  24. Diffusion fsu-logo

  25. Diffusion fsu-logo

  26. Diffusion fsu-logo

  27. Diffusion fsu-logo

  28. Diffusion Macroscopic quantity of interest : empirical density of the rings R ρ R ( i, t ) = 1 X σ ( k, i, t ) R k =1 What’s diffusion in this context ? For a given configuration of scatterers, does diffusion occur ? Sometimes yes, sometimes no. How often ? fsu-logo

  29. Diffusion in discrete time and space Let 0 < µ < 1, and the discrete time evolution system for t ∈ N : ρ ( i, t + 1) = ρ ( i, t ) + µ (1 − µ ) 2 [ ρ ( i − 1 , t ) + ρ ( i + 1 , t ) − 2 ρ ( i, t )] 8 > > > < ρ ( − N, t + 1) = ρ ( − N, t ) + µ (1 − µ )[ ρ ( − N + 1 , t ) − ρ ( − N, t )] > > > : ρ ( N, t + 1) = ρ ( N, t ) + µ (1 − µ )[ ρ ( N − 1 , t ) − ρ ( N, t )] Proposition Let { h ( i ) > 0 : i ∈ Λ N } such that P i ∈ Λ N h ( i ) = h , and ρ h such that h ρ h ( i ) = 2 N +1 , ∀ i ∈ Λ N then there exists a unique solution ρ such that ρ ( i, 0) = h ( i ) P i ∈ Λ N ρ ( i, t ) = h , ∀ t ∈ N . ∃ c > 0 such that t →∞ e ct || ρ ( · , t ) − ρ h || = 0 lim fsu-logo

  30. Diffusion with high probability Theorem Let { σ ( k, i ; 0) : ( k, i ) ∈ C N } be a set of independent Bernoulli random variables such that E [ σ ( k, i, 0)] = ˆ ρ i ∈ [0 , 1] , ∀ k ∈ { 1 , . . . , R } and let { ξ ( k, i ) : ( k, i ) ∈ C N } such that E [ ξ ( k, i )] = µ ∈ ]0 , 1[. Let also ˆ ρ ( · , t ) be the solution of the above system with initial condition ˆ ρ ( i, 0) = ˆ ρ i , ∀ ǫ > 0 and ∀ α ∈ ]0 , 1[, 2 3 N C [ 5 ≤ {| ρ R ( i, t ) − ˆ sup ρ ( i, t ) | > ǫ } ǫ 2 R 1 − α . P 4 t ∈ [0 ,R α ] i = − N If one chooses the configuration of scatterers as the result of independant heads and tails (with a bias given by µ ), then as R goes to infinity, it is more and more unlikely to pick a configuration of scatterers that would lead to an evolution of the empirical densities that would be far from the reference solution ˆ ρ at any given time smaller than the minimal recurrence time. fsu-logo

  31. Proof Show : E [ ρ R ( i, t )] = ˆ ρ ( i, t ) , i ∈ Λ N , 0 < t < R α . Use σ ( k, i ; t ) = (1 − J ( k − 1 , i ))(1 − J ( k − 1 , i − 1)) σ ( k − 1 , i ; t − 1) + J ( k − 1 , i − 1) σ ( k − 1 , i − 1; t − 1) + J ( k − 1 , i ) σ ( k − 1 , i + 1; t − 1) . J ( k − 1 , i ) J ( k − 1 , i − 1) = 0 E [ J ( k − 1 , i )] = E [ J ( k − 1 , i − 1)] = µ (1 − µ ) 2 , ∀ 1 ≤ k ≤ R , Independance between σ ( k − 1 , i, t − 1) and the scatterer “ahead” for t < R α < R . E [ ρ R ( i, t )] − E [ ρ R ( i, t − 1)] = µ (1 − µ ) 2 “ ” E [ ρ R ( i − 1 , t − 1)]+ E [ ρ R ( i + 1 , t − 1) − 2 E [ ρ R ( i, t − 1)] Same than diffusion equation. fsu-logo

  32. Proof Next, bound variance of the macroscopic density : ! 2 R R 1 Var[ ρ R ( i, t )] X X = R 2 E [ σ ( k, i ; t ) − E [ σ ( k, i ; t )] ] k =1 k =1 0 1 R R 1 E [ σ ( k, i ; t )]) 2 X σ ( k, i ; t ) σ ( k ′ , i ; t )] − ( X = @ E [ A R 2 k =1 k,k ′ =1 fsu-logo

  33. Proof Remember σ ( k, i ; t ) = σ ( τ − t ( k, i ); 0), then X E [ σ ( x ; 0)] P [ τ − t ( k, i ) = x ] E [ σ ( k, i ; t )] = x ∈C N E [ σ ( k, i ; t ) σ ( k ′ , i ; t )] X E [ σ ( x ; 0) σ ( x ′ ; 0)] P [ τ − t ( k, i ) = x, τ − t ( k ′ , i ) = x ′ ] . = x,x ′ ∈C N When k � = k ′ , we get : E [ σ ( k, i ; t ) σ ( k ′ , i ; t )] X E [ σ ( x ; 0)] E [ σ ( x ′ ; 0)] P [ τ − t ( k, i ) = x, τ − t ( k ′ , i ) = x ′ ] = x � = x ′ ∈C N because If k � = k ′ , then τ − t ( k, i ) � = τ − t ( k ′ , i ) Initial occupation variables are independent . fsu-logo

  34. Proof Var[ ρ R ( i, t )] ≤ 1 1 X X E [ σ ( x ; 0)] E [ σ ( x ′ ; 0)]∆[( k, x ) , ( k ′ , x ′ ); t ] | R + 2 R 2 | k � = k ′ x,x ′ ∈C N where ∆[( k, x ) , ( k ′ , x ′ ); t ] = P [ τ − t ( k, i ) = x, τ − t ( k ′ , i ) = x ′ ] − P [ τ − t ( k, i ) = x ] P [ τ − t ( k ′ , i ) = x ′ ] By rotational invariance : Var[ ρ R ( i, t )] ≤ 1 R + 1 X X E [ σ ( x ; 0)] E [ σ ( x ′ ; 0)]∆[(1 , x ) , ( k ′ , x ′ ); t ] | . R | k ′ � =1 x,x ′ ∈C N If t + 1 < k ′ ≤ R − t + 1 then τ − t (1 , i ) and τ − t ( k ′ , i ) are independent random variables and for those k ′ , ∆[(1 , x ) , ( k ′ , x ′ ); t ] = 0 . fsu-logo

  35. Proof R + 1 1 Var[ ρ R ( i, t )] ≤ X X P [ τ − t (1 , i ) = x, τ − t ( k ′ , i ) = x ′ ] R x,x ′ ∈C N R − t +1 <k ′ ≤ R 1 <k ′ ≤ t +1 1 X X P [ τ − t (1 , i ) = x ] P [ τ − t ( k ′ , i ) = x ′ ] + R x,x ′ ∈C N R − t +1 <k ′ ≤ R 1 <k ′ ≤ t +1 R + 4( t − 1) 1 ≤ R 6 ≤ R 1 − α , for R large enough . fsu-logo

  36. Distribution of the periods T ( k, i ) = inf { n : τ n ( k, i ) = ( k, i ) } T ( k, i ) ∈ { R, 2 R, . . . , (2 N + 1) R } Question Compute P [ T ( k, i ) = lR ], ∀ l ∈ { R, 2 R, . . . , (2 N + 1) R } fsu-logo

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend