diana an object oriented tool for nonlinear analysis of
play

DIANA An object-oriented tool for nonlinear analysis of chemical - PowerPoint PPT Presentation

2 September 2008 DIANA An object-oriented tool for nonlinear analysis of chemical processes Mykhaylo Krasnyk Max Planck Institute for Dynamics of Complex Technical Systems, PSPD group Otto-von-Guericke-University, IFAT U N I E V E K


  1. 2 September 2008 DIANA — An object-oriented tool for nonlinear analysis of chemical processes Mykhaylo Krasnyk Max Planck Institute for Dynamics of Complex Technical Systems, PSPD group Otto-von-Guericke-University, IFAT U N I E V E K R S C I I T R Ä E U T G M A N G O D V E O B U T R T O G MAX−PLANCK−INSTITUT DYNAMIK KOMPLEXER TECHNISCHER SYSTEME MAGDEBURG

  2. U N I V K E E R C S I I T R E Ä T U G M Outline N A G O D V E O B U T T R O G Introduction 1 Steady-state point analysis 2 Limit points continuation Higher co-dimension singularities Simulation models in Diana Parameter continuation Case Study I: Nonlinear analysis of MCFC 3 Periodic solutions continuation 4 Analysis of periodic solutions Recursive Projection Method Case Study II: Periodic solutions in MSMPR Crystallizer 5 Summary 6 OvGU, IFAT Outline 2/20

  3. U N I V K E E R C S I I T R E Ä T U G M Introduction N A G O D V E O B U T T R O G Chemical Process Engineering OvGU, IFAT Introduction 3/20

  4. U N I V K E E R C S I I T R E Ä T U G M Introduction N A G O D V E O B U T T R O G Chemical Process Engineering Dynamical Systems Analysis c in T , c ˙ q c OvGU, IFAT Introduction 3/20

  5. U N I V K E E R C S I I T R E Ä T U G M Introduction N A G O D V E O B U T T R O G Chemical Process Engineering Dynamical Systems Analysis T [ K ] c in T , c ˙ q t [ s ] c OvGU, IFAT Introduction 3/20

  6. U N I V K E E R C S I I T R E Ä T U G M Introduction N A G O D V E O B U T T R O G Chemical Process Engineering Dynamical Systems Analysis T [ K ] c in T , c ˙ q t [ s ] T [ K ] c q [ l / h ] ˙ OvGU, IFAT Introduction 3/20

  7. U N I V K E E R C S I I T R E Ä T U G M Introduction N A G O D V E O B U T T R O G Chemical Process Engineering Dynamical Systems Analysis T [ K ] c in T , c ˙ q t [ s ] T [ K ] c q [ l / h ] ˙ State of the art AUTO/MATCONT detection and continuation of bifurcation points and pe- riodic solutions in low-order ODE, no modeling tool DIVA stationary and dynamic simulations of higher-order DAE for engineering processes, outdated FORTRAN77 code LOCA bifurcation analysis of large-scale CFD applications, lim- ited application problems OvGU, IFAT Introduction 3/20

  8. U N I V K E E R C S I I T R E Ä T U G M Software tool Diana N A G O D V E O B U T T R O G Diana — Dynamic simulation and nonlinear analysis tool developed at MPI Magdeburg modularization, extensibility and object-oriented architecture equation based models numerical solvers based on free code enhanced scripting and visualization OvGU, IFAT Introduction 4/20

  9. U N I V K E E R C S I I T R E Ä T U G M Software tool Diana N A G O D V E O B U T T R O G Diana — Dynamic simulation and nonlinear analysis tool developed at MPI Magdeburg modularization, extensibility and object-oriented architecture equation based models numerical solvers based on free code enhanced scripting and visualization Objectives of the work generation of C ++ model code for Diana symbolic differentiation of models (Maxima package) parameter continuation of nonlinear problems higher-order singularities of steady-state curves efficient calculation of periodic solutions by reduction techniques analysis of test models OvGU, IFAT Introduction 4/20

  10. U N I V K E E R C S I I T R E Ä T U Steady-state point continuation G M N A G O D V E O B U T T R O G Parameter continuation vs. dynamic simulation Condition for steady-state points of an autonomous system x ∈ R n , ν ∈ R p is: ! x = f ( x , ν ) ˙ =0 OvGU, IFAT Steady-state point analysis 5/20

  11. U N I V K E E R C S I I T R E Ä T U Steady-state point continuation G M N A G O D V E O B U T T R O G Parameter continuation vs. dynamic simulation Condition for steady-state points of an autonomous system x ∈ R n , ν ∈ R p is: ! x = f ( x , ν ) ˙ =0 x x ( t , x 0 ) x s 0 t OvGU, IFAT Steady-state point analysis 5/20

  12. U N I V K E E R C S I I T R E Ä T U Steady-state point continuation G M N A G O D V E O B U T T R O G Parameter continuation vs. dynamic simulation Condition for steady-state points of an autonomous system x ∈ R n , ν ∈ R p is: ! x = f ( x , ν ) ˙ =0 x x x ( t , x 0 ) x s x s x ( t , x 0 ) | t = ∞ → 0 t 0 λ s λ ∈ ν OvGU, IFAT Steady-state point analysis 5/20

  13. U N I V K E E R C S I I T R E Ä T U Steady-state point continuation G M N A G O D V E O B U T T R O G Parameter continuation vs. dynamic simulation Condition for steady-state points of an autonomous system x ∈ R n , ν ∈ R p is: ! x = f ( x , ν ) ˙ =0 x x x ( λ ) x ( t , x 0 ) x s x s → 0 t 0 λ s λ ∈ ν OvGU, IFAT Steady-state point analysis 5/20

  14. U N I V K E E R C S I I T R E Ä T U Steady-state point continuation G M N A G O D V E O B U T T R O G Parameter continuation vs. dynamic simulation Condition for steady-state points of an autonomous system x ∈ R n , ν ∈ R p is: ! x = f ( x , ν ) ˙ =0 x x x ( λ ) x ( t , x 0 ) x s x s → 0 t 0 λ s λ ∈ ν Stability is determined by eigenvalues of a linearized system at the steady-state point x s , ν s : V Λ = ∂ f ∂ x V OvGU, IFAT Steady-state point analysis 5/20

  15. ❍ ❍ P ▲ ▲ ▲ ▲ U N I V K E E R C S I I T R E Ä T U Limit points analysis G M N A G O D V E O B U T T R O G Example: limit and hysteresis points ( α, β, λ ∈ ν ) ❙ x λ OvGU, IFAT Steady-state point analysis/ Limit points continuation 6/20

  16. ❍ ❍ P ▲ ▲ U N I V K E E R C S I I T R E Ä T U Limit points analysis G M N A G O D V E O B U T T R O G Example: limit and hysteresis points ( α, β, λ ∈ ν ) ❙ ▲ ▲ x λ OvGU, IFAT Steady-state point analysis/ Limit points continuation 6/20

  17. ❍ P ▲ ▲ U N I V K E E R C S I I T R E Ä T U Limit points analysis G M N A G O D V E O B U T T R O G Example: limit and hysteresis points ( α, β, λ ∈ ν ) ❍ ❙ ▲ ▲ x α λ OvGU, IFAT Steady-state point analysis/ Limit points continuation 6/20

  18. P U N I V K E E R C S I I T R E Ä T U Limit points analysis G M N A G O D V E O B U T T R O G Example: limit and hysteresis points ( α, β, λ ∈ ν ) ❍ ❍ ❙ ▲ projection to ▲ α - λ plane ▲ ▲ x α α λ λ OvGU, IFAT Steady-state point analysis/ Limit points continuation 6/20

  19. U N I V K E E R C S I I T R E Ä T U Limit points analysis G M N A G O D V E O B U T T R O G Example: limit and hysteresis points ( α, β, λ ∈ ν ) ❍ ❍ P ❙ ▲ projection to ▲ α - λ plane ▲ ▲ x α α β λ λ OvGU, IFAT Steady-state point analysis/ Limit points continuation 6/20

  20. U N I V K E E R C S I I T R E Ä T Lyapunov-Schmidt reduction 1 U G M N A G O D V E O B U T T R O G Reduction definition For a system ˙ x = f ( x , ν ) with f ( x s , ν s ) = 0 and L = f x ( x s , ν s ) with dim ker L = 1 analysis of a limit points curve can be performed with a scalar equation g ( z , ν )! 1M. Golubitsky and D. G. Schaeffer, Singularities and groups in bifurcation theory. Vol. I , 1985. OvGU, IFAT Steady-state point analysis/ Limit points continuation 7/20

  21. U N I V K E E R C S I I T R E Ä T Lyapunov-Schmidt reduction 1 U G M N A G O D V E O B U T T R O G Reduction definition For a system ˙ x = f ( x , ν ) with f ( x s , ν s ) = 0 and L = f x ( x s , ν s ) with dim ker L = 1 analysis of a limit points curve can be performed with a scalar equation g ( z , ν )! Lyapunov-Schmidt reduction defines a mapping φ : ker L → range L ⊥ φ ( v , ν ) := ( I − E ) f ( v + W ( v , ν ) , ν ) 1M. Golubitsky and D. G. Schaeffer, Singularities and groups in bifurcation theory. Vol. I , 1985. OvGU, IFAT Steady-state point analysis/ Limit points continuation 7/20

  22. U N I V K E E R C S I I T R E Ä T Lyapunov-Schmidt reduction 1 U G M N A G O D V E O B U T T R O G Reduction definition For a system ˙ x = f ( x , ν ) with f ( x s , ν s ) = 0 and L = f x ( x s , ν s ) with dim ker L = 1 analysis of a limit points curve can be performed with a scalar equation g ( z , ν )! Lyapunov-Schmidt reduction defines a mapping φ : ker L → range L ⊥ φ ( v , ν ) := ( I − E ) f ( v + W ( v , ν ) , ν ) 0 ∈ range L ⊥ is defined by an adjoint system The basis v 0 ∈ ker L and v ∗ 8 f ( x , ν ) = 0 , > < f x ( x , ν ) v 0 − β v ∗ = 0 , || v 0 || 2 = 1 , 0 f T x ( x , ν ) v ∗ || v ∗ > 0 − γ v 0 = 0 , 0 || 2 = 1 . : Reduced equation in the chosen basis { v 0 , v ∗ 0 } is g ( z , λ ) = � v ∗ 0 , f ( zv 0 + W ( zv 0 , λ ) , λ ) � , where z ∈ R and λ ∈ R ⊂ ν 1M. Golubitsky and D. G. Schaeffer, Singularities and groups in bifurcation theory. Vol. I , 1985. OvGU, IFAT Steady-state point analysis/ Limit points continuation 7/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend