development of a concurrent dual band switch mode power
play

Development of a Concurrent Dual-Band Switch-Mode Power Amplifier - PowerPoint PPT Presentation

Development of a Concurrent Dual-Band Switch-Mode Power Amplifier Based on Current- Switching Class-D Configuration Yifei Li, Byron J. Montgomery and Nathan M. Neihart Iowa State University WAMICON 2016 Clearwater Beach, FL Contents


  1. Development of a Concurrent Dual-Band Switch-Mode Power Amplifier Based on Current- Switching Class-D Configuration Yifei Li, Byron J. Montgomery and Nathan M. Neihart Iowa State University WAMICON 2016 – Clearwater Beach, FL

  2. Contents Contents  Background and Motivation  Theoretical Analysis of Proposed Concurrent Dual- band Class-D Power Amplifier  Design Method and Considerations  Measurement Results and Discussion 2

  3. Demand for Concurrent Multi-Band PAs Demand for Concurrent Multi-Band PAs  Higher data rate (carrier aggregation)  By using concurrent (multi-)dual-band PAs, we are trying to reduce area, cost, design complexity and increase efficiency as well. f 1,dn f 1 f 1,up PA 1 f 1 ,f 2 Improve Duplexer f 1 ,f 2 f 1 ,f 2 Duplexer Dual-Band f 2,up Concurrent Diplexer PA 2 Duplexer Dual-Band f 1 ,f 2 f 2 PA Single- f 2,dn Band PA Proposed TX Schematic for CA Currently Used TX Schematic for CA 3

  4. Existing Concurrent Dual-Band PAs Existing Concurrent Dual-Band PAs  Linear PAs are used to accommodate the varying envelope of concurrent dual-band signals  Theoretical Maximum Drain efficiency of Linear PAs 2 ∗ 𝑊 ∗ 𝐽 𝑒𝑡,𝑛𝑏𝑦 2 ∗ 1 𝑒𝑡,𝑛𝑏𝑦 η = 𝑄 = 𝑄 𝑝1 + 𝑄 2𝜷 2𝜷 𝑝 𝑝2 Concurrent Dual-Band Class A = 𝑒𝑡,𝑛𝑏𝑦 /2 ∗ 𝐽 𝑒𝑡,𝑛𝑏𝑦 /2 = 25% 𝑄 𝑊 𝐸𝐸 ∗ 𝐽 𝐸𝐷 𝑊 𝐸𝐷 2 ∗ 𝑊 ∗ 𝐽 𝑒𝑡,𝑛𝑏𝑦 2 ∗ 1 𝑒𝑡,𝑛𝑏𝑦 η = 𝑄 = 𝑄 𝑝1 + 𝑄 2𝜷 𝜸 𝑝 𝑝2 = 𝑒𝑡,𝑛𝑏𝑦 /2 ∗ 𝐽 𝑒𝑡,𝑛𝑏𝑦 /𝜹 = 62% Concurrent Dual-Band Class B 𝑄 𝑊 𝐸𝐸 ∗ 𝐽 𝐸𝐷 𝑊 𝐸𝐷 Note: 𝛽, 𝛾, 𝛿 are about 2, 4, and 5 respectively in most cases (non-harmonic related frequency ratio). V ds V ds 2 2 + I ds I ds 1.5 1.5 V ds and I ds V ds and I ds 1 1 0.5 0.5 0 0 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Time Time Concurrent Dual-Band Class B Concurrent Dual-Band Class A Input Waveform Z. Zhang, MWCAS, 2015. 4 X. Chen, MTT 2013

  5. Existing Concurrent Dual-Band PAs in Literatures  Switchless Dual-Band PA: IMs not considered Pout @ Efficiency @ Frequency Pout @ Single Efficiency @ Concurrent Concurrent Signal (GHz) Mode Single Mode Mode Mode IET MAP, 2011 1.96/3.5 39.5/40 dBm 39.5 dBm 60%/55% 49% CW WAMICON, 2012 1.8/2.4 35.5/35.5 dBm 33 dBm 34.7%/32.7% 24.7% WCDMA/LTE T-MTT, 2012 1.8/2.4 36.2/34.5 dBm 33.4 dBm 54.2%/40.7% 34.4% LTE/WiMax TCAS I, 2014 0.85/2.33 44/42.5 dBm 31.4 dBm 60%/53% 26.7% CW/LTE  Linear Concurrent Dual-Band PAs: IMs shorting Frequency Pout @ Single Pout @ Efficiency @ Efficiency @ Signal (GHz) Mode Concurrent Mode Single Mode Concurrent Mode T-MTT, 2012 1.9/2.6 41.5/41.2 dBm 39.5 dBm 73%/67.5% 56% CW IMS, 2014 1.9/2.6 44.5/44 dBm 42 dBm 65%/60% 53% CW  Switch-Mode Concurrent Dual-Band PAs?  Higher concurrent-mode output power  Higher concurrent-mode efficiency 5

  6. Contents Contents  Backgrounds and Motivations  Theoretical Analysis of Proposed Concurrent Dual- band Class-D Power Amplifier  Design Method and Considerations  Measurement Results and Discussion  Conclusion 6

  7. Proposed Concurrent Dual-Band Current- Proposed Concurrent Dual-Band Current- Switching Class-D PA Switching Class-D PA M1 + I DSP 3 V IP V DSP + V IM 2 * * V IP I DC Magnitude [V] - - + I O 1 * * V B + R L + * - Dual-Band V O 0 V in * VDD Shunt - - V IM - -1 Resonator - + V DSM XMR_out XMR_in -2 I DSM M2 + 0 0.5 1 1.5 2 Time Idealized analysis: zero knee voltage, zero threshold voltage  Input signal Harmonic related frequencies, 𝑊 𝐽𝑄 𝑢 = 𝐵 𝑡𝑗𝑜 𝜕 1 𝑢 + 𝐵 𝑡𝑗𝑜 𝜕 2 𝑢 + 𝑊 𝐶 𝝏 𝟑 /𝝏 𝟐 =2, 3, are avoided. 𝑊 𝐽𝑁 𝑢 = 𝐵 𝑡𝑗𝑜 𝜕 1 𝑢 + 𝜌 + 𝐵 𝑡𝑗𝑜 𝜕 2 𝑢 + 𝜌 + 𝑊 𝐶 7

  8.  Transistor transfer function I DSP(M) I DC 0, 𝑊 𝑢 < 𝑊 𝑢ℎ = 0 𝐽𝑄 𝑁 𝐽 𝐸𝐷 𝐽 𝐸𝑇𝑄 𝑁 𝑢 = 𝑊 𝑢 , 𝑊 𝑢ℎ < 𝑊 𝑢 < 2𝑊 𝐽𝑄 𝑁 𝐽𝑄 𝑁 𝐶 2𝑊 I DC /2 𝐶 𝐽 𝐸𝐷 , 𝑊 𝑢 > 2𝑊 𝐽𝑄 𝑁 𝐶 V IP (V IM ) V th =0 V B 2V B  Assuming the PA is overdriven, I DC is fixed  Determined by V DD and R L , independent of A  I DC can be accommodated by changing V DD or R L when 𝑊 𝐶 changes  Drain Current and Output Current 𝐽 0 = 𝐽 𝐸𝑇𝑄 − 𝐽 𝐸𝑇𝑁 𝑂 𝑁 𝐽 𝑝 𝑢 ≈ 𝐽 𝑛,𝑜 ∗ sin ( 𝑛𝜕 1 ± 𝑜𝜕 2 𝑢 + 𝜄 𝑛,𝑜 ) 𝑜=0 𝑛=0 Where 𝐽 0,0 , 𝐽 0,1 , 𝐽 1,0 represent DC and two fundamentals respectively. 8

  9. M1 + I DSP  Transistor transfer function V DSP + * * V IP I DC I DSP(M) I DC - 0, 𝑊 - 𝑢 < 𝑊 𝑢ℎ = 0 + I O 𝐽𝑄 𝑁 * * V B 𝐽 𝐸𝐷 + R L + * - Dual-Band V O 𝐽 𝐸𝑇𝑄 𝑁 𝑢 = 𝑊 𝑢 , 𝑊 𝑢ℎ < 𝑊 𝑢 < 2𝑊 𝐽𝑄 𝑁 𝐽𝑄 𝑁 𝐶 V in * 2𝑊 I DC /2 VDD 𝐶 Shunt - - V IM 𝐽 𝐸𝐷 , 𝑊 𝑢 > 2𝑊 - 𝐽𝑄 𝑁 𝐶 Resonator - + V DSM XMR_out V IP (V IM ) XMR_in I DSM M2 + V th =0 V B 2V B  Assuming the PA is overdriven, I DC is fixed  Determined by V DD and R L , independent of A  I DC can be accommodated by changing V DD or R L when 𝑊 𝐶 changes  Drain Current and Output Current 𝐽 0 = 𝐽 𝐸𝑇𝑄 − 𝐽 𝐸𝑇𝑁 𝑂 𝑁 𝐽 𝑝 𝑢 ≈ 𝐽 𝑛,𝑜 ∗ sin ( 𝑛𝜕 1 ± 𝑜𝜕 2 𝑢 + 𝜄 𝑛,𝑜 ) 𝑜=0 𝑛=0 Where 𝐽 0,0 , 𝐽 0,1 , 𝐽 1,0 represent DC and two fundamentals respectively. 9

  10.  Output Voltage and Drain Voltage V DSP 1.2 V o t = R L I 1,0 sin ω 1 t + θ (1,0) + I 0,1 sin ω 2 t + θ (0,1) I DSP 1 Magnitude 𝑊 𝐸𝑇𝑄(𝑁) 𝑢 = 0.5 𝑊 𝑝 𝑢 ± 𝑊 𝑝 𝑢 A/V B =5 0.8 A/V B =2 A/V B =1 0.6 A/V B =5  Drain Efficiency A/V B =2 0.4 A/V B =1 𝑈 0.2 𝐸𝐸 = 1 𝑊 𝑈 0.5 𝑊 𝐸𝑇𝑄 𝑢 + 𝑊 𝐸𝑇𝑁 (𝑢) 𝑒𝑢 0 0 0 0.5 1 1.5 2 Time 2 2 (I (0,1) +I (1,0) )𝑆 𝑀 𝜃 = 𝑄 𝑆𝐺 = 100 20 20 20 𝑄 2 𝑊 𝐸𝐸 𝐽 𝐸𝐷 𝐸𝐷 Drain Efficiency Drop(%) Drain Efficiency(%) 90 15 15 15  What will happen with non-zero knee voltage? A/V B =1 80 10 10 10 A/V B =2 A/V B =5 70 5 5 5 60 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4  2 /  1 10

  11. Non-Zero Knee Voltage Non-Zero Knee Voltage I DC V B Bias Saturation Triode Bias V B 245mA 176mA current 464mA 468mA I DC V DC 15V 15V I Bias R L 50Ω 40Ω XMR 2:1 2:1 ratio 𝜽 93.4% 77.5% 11

  12. Contents Contents  Backgrounds and Motivations  Theoretical Analysis of Proposed Concurrent Dual- band Class-D Power Amplifier  Design Method and Considerations  Measurement Results and Discussion  Conclusion 12

  13. Design Method Design Method Ideal transformer and shunt resonator provides:  Z Load = Ideal open @ even harmonics and IMs  Z Load = Ideal short @ odd harmonics and IMs  Z Load = R opt @ fundamentals Order of Frequency I DSP (A) V DSP (V) * Nonlinearity + * Z Load R L * Dual-Band DC 0 0.5 0.155 Shunt 𝝏 𝟐(𝟑) 1 0.38 0.19 Resonator - XMR_out 𝝏 𝟑 ± 𝝏 𝟐 2 0 0.1 2 𝝏 𝟐(𝟑) 2 0 0.04 Ideal Load Network 𝟑𝝏 𝟐(𝟑) − 𝝏 𝟑(𝟐) 3 0.09 0 𝟑𝝏 𝟐(𝟑) + 𝝏 𝟑(𝟐) 3 0.1 0 3 𝝏 𝟐 3 0.02* 0 3 𝝏 𝟑 3 0.008* 0 13

  14. Implementation Considerations Implementation Considerations  Output network target:  Z opt @ fundamentals;  high impedance @ even-order harmonic and IM (especially 2 nd -order);  low impedance @ odd-order harmonic and IM  C out  Differential: absorbed in to dual-band shunt resonator  Common-mode: needs to be resonated out by the output network Output Matching V in V B f 1 V DD Distributed Output 50 Ω Marchand Input Matching f 2 Balun Matching Output Input Balun Network 14

  15. Board Layout Board Layout V DD Output Balun V B Output Matching Differential Input Shunt Resonator Input Balun Matching V B V DD 15

  16. Contents Contents  Backgrounds and Motivations  Theoretical Analysis of Proposed Concurrent Dual- band Class-D Power Amplifier  Design Method and Considerations  Measurement Results and Discussion  Conclusion 16

  17. Measurement Results Measurement Results  Single Mode  Low band: 𝜃 = 55.6% @ Pout=30dBm; 6dB over drive  High band: 𝜃 = 48.2% @ Pout=30dBm; 6dB over drive  Concurrent Dual-Band Mode  𝜃 = 46% @ Pout=29.7dBm; 6dB over drive 60 18 18 18 30 50 15 15 15 Output Power(dBm) Drain Efficiency(%) Power Gain(dB) 40 12 12 12 26 Single Mode@960MHz 30 9 9 9 Single Mode@1.51GHz Single Mode@960MHz 22 Concurrent Mode Single Mode@1.51GHz 20 6 6 6 Concurrent Mode Concurrent Mode @960MHz 10 3 3 3 18 Concurrent Mode @1.51GHz 0 0 0 0 0 5 10 15 20 25 20 20 20 20 22 22 22 22 24 24 24 24 26 26 26 26 28 28 28 28 30 30 30 30 17 Input Power(dBm) Output Power(dBm)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend