switch mode converters as feedback systems
play

Switch-mode converters as feedback systems A B m e v o v - PDF document

Mor M. Peretz, Switch-Mode Power Supplies [8-1] Control of switch-mode converters [8-2] Mor M. Peretz, Switch-Mode Power Supplies Control objectives Produce control command to Regulate the output voltage Obtain zero or small


  1. Mor M. Peretz, Switch-Mode Power Supplies [8-1] Control of switch-mode converters [8-2] Mor M. Peretz, Switch-Mode Power Supplies Control objectives Produce control command to • Regulate the output voltage • Obtain zero or small steady-state (DC) error • Quick response to reference changes • Fast recovery • Immunity to input and load changes • Reasonable overshoot 1

  2. Mor M. Peretz, Switch-Mode Power Supplies [8-3] Switch-mode converters as feedback systems A B   m e v o   v d     e f f f Power stage Compensator Modulator d v V o e • Power stage is a Switching System (non-linear) • Compensator is an analog or digital controller • Linear control theory based design  small signal response [8-4] Mor M. Peretz, Switch-Mode Power Supplies Control of PWM converters disturbances in voltage mode 2

  3. Mor M. Peretz, Switch-Mode Power Supplies [8-5] Voltage regulation V in ( power ) V O Duty cycle ( power ) Power stage C O R O Feedback k V O V e PWM Driver modulator error amp V ref [8-6] Mor M. Peretz, Switch-Mode Power Supplies PWM modulator comp    V e V V t +   p v V V t v T - s    V p V V t   p v on  V V V V e t e v T s V v Oscillator    t V V   on e v D  on T V V D s p v 1 Practical D on max  0.8  0.9 0 V e V v V p 3

  4. Mor M. Peretz, Switch-Mode Power Supplies [8-7] Sawtooth generator [8-8] Mor M. Peretz, Switch-Mode Power Supplies Transfer functions V e t D Zoom   m e t d D t 4

  5. Mor M. Peretz, Switch-Mode Power Supplies [8-9] Control of PWM converters disturbances in voltage mode v out A  d  v 0 d in  i 0 out v out  A vin  v d 0 in i  0 out v out Z  out  v 0 i in out  d 0    v dA v A i Z out d in vin out out LG  1 LG A Z K K BA t M d vin out    v v v i out ref in out    K 1 LG 1 LG 1 LG t [8-10] Mor M. Peretz, Switch-Mode Power Supplies Dynamics of feedback systems Block diagram division B  S  S A S  + in out H P 1 - S  f K  LG ( f ) A B A – known (power stage + divider) B – unknown (have to be designed) 5

  6. Mor M. Peretz, Switch-Mode Power Supplies [8-11] LoopGain test Nyquist Criterion A ( s )  A CL  1 LG ( s ) • The system is unstable if {1+LG(s)} has roots in the right half of the complex plane. • Nyquist criterion is a test for location of {1+LG(s)} roots. • Nyquist criterion is normally translated into the Bode plane (frequency domain) [8-12] Mor M. Peretz, Switch-Mode Power Supplies LoopGain test db     |LG|  f A f f   +180 In negative feedback f 0 o  o   systems 180 ( 180 ) At f  0 6

  7. Mor M. Peretz, Switch-Mode Power Supplies [8-13] Bode plot db  A  A  1 f   180 o already substracted f 0  m -180      o    o ( 180 ) 180     m | A | 1 | A | 1 [8-14] Mor M. Peretz, Switch-Mode Power Supplies Graphical representation of BA conventional method A [ dB ] A AB [ dB ] f [ Hz ] AB B [ dB ] B f [ Hz ] f f f 1 2 3 f [ Hz ] f f f 1 2 3  Tedious – need to re-plot BA  Analysis (not design) oriented  Requires iterations 7

  8. Mor M. Peretz, Switch-Mode Power Supplies [8-15] Graphical Representation of BA 1   20log A 20log 20log(BA) B 1     20logA 20log B A 1 A [ dB ] B A BA   1 LG ( f ) BA 1 B  B A 1 BA  1 f o [ Hz ] [8-16] Mor M. Peretz, Switch-Mode Power Supplies Possible compensations V o d A   dB dB 1/B - 40 dec dB Log(f) - 20 dec 1/B 1/B 8

  9. Mor M. Peretz, Switch-Mode Power Supplies [8-17] Possible compensations o   90 o   m 45 m o   90 m o   45 m o   90 1 m o    45 m 0 db dec  20 db dec A s u db  db 40 s dec  db 20 u 0 db dec dec s  db  db 20 60 dec dec f s  40 db 1 dec B db [8-18] Mor M. Peretz, Switch-Mode Power Supplies Overshoot and Q in Closed Loop in Response to step in S in Excitation Overshoot t ACL  cos Q    o m Q for 50  m sin m f Overshoot o   Design target 45 m m o 50 9

  10. Mor M. Peretz, Switch-Mode Power Supplies [8-19] Extracting the power stage control-to-output transfer function L S V o D R V C o in o   E V D L in in on V o G   G I D C b b on I L o V R L in   o E V V E in o L in [8-20] Mor M. Peretz, Switch-Mode Power Supplies Linearization out V(in) I(3)   V out ( ) V in ( ) I (3) R   ( ( V out )) ( ( V out ))   d V out ( ( )) v in ( ) i (3)   ( ( )) V in ( (3)) I   V out ( ) V out ( )   V out ( ) v in ( ) i (3)   V in ( ) I (3) 10

  11. Mor M. Peretz, Switch-Mode Power Supplies [8-21] SPICE Linearization (AC Analysis) out out    F V(in) I(3)  i ( 3 )    I ( 3 )   R o R    F  V ( in )     V ( in )  o   F F   I (3) V in ( )   0 0 V in ( ) I (3) [8-22] Mor M. Peretz, Switch-Mode Power Supplies Buck linearization L in out in  E V D in C b  I R G I D V o in E L o L G in b    E in   I    D L L in o out 0  V ( in ) v ( d ) d 0  V in R o V ( d ) i ( L ) C o VAC 0  R 0  V ( d ) v ( in ) I ( L ) v ( d ) V D    G    G b      E b     I  in      D L  o   V o in o 11

  12. Mor M. Peretz, Switch-Mode Power Supplies [8-23] Possible phase compensation schemes Lag network R A  f o R in 1  f p  2 C R f f [8-24] Mor M. Peretz, Switch-Mode Power Supplies Design example 12

  13. Mor M. Peretz, Switch-Mode Power Supplies [8-25] Lag network 40 R2 0 out1 0V C1 100k 0V -40 10n R1 E1 db(V(out1)) 0d IN+ OUT+ V1 0V 1k IN- OUT- 1Vac EVALUE 0Vdc V(%IN+, %IN-)*1E6 -50d SEL>> -100d 10Hz 100Hz 10KHz 1.0MHz p(-V(out1)) Frequency [8-26] Mor M. Peretz, Switch-Mode Power Supplies Lag – Lead network 1  f  20 db  dec A A ( ampl .) o OL A 0 f 2 1  f f  L 2 C R f 1 A 2 f f R  f A 2 R in 13

  14. Mor M. Peretz, Switch-Mode Power Supplies [8-27] Lag-Lead network 100 R9 0V 0V 1g 50 R3 C2 out2 10k 10n 0 db(V(out2)) R4 E3 0d IN+ OUT+ V2 0V 1k IN- OUT- 1Vac EVALUE 0Vdc -50d V(%IN+, %IN-)*1E6 SEL>> -100d 10Hz 100Hz 10KHz 1.0MHz p(-V(out2)) Frequency [8-28] Mor M. Peretz, Switch-Mode Power Supplies Double zero compensation scheme R A 3 OL R 1  R C C 3 2 3 β 1 R  R R 2 1 2  π 2 f R 2 C 3                     1 1 1 1    2  2  2  2  π π π π R C R C R C R C    3   2    2   1     1  1    3   3 1 1  π 2 f R 2 C 3 β dB  20 dec 14

  15. Mor M. Peretz, Switch-Mode Power Supplies [8-29] Double Zero 40 R8 1g C4 0V 100p 20 R7 C3 100k 10n out3 C5 R5 0 E2 db(V(out3)) 0V IN+ OUT+ 0V V3 100d 10n 1k IN- OUT- 1Vac R6 EVALUE 0Vdc V(%IN+, %IN-)*1E6 100k 0d SEL>> -100d 0 10Hz 100Hz 10KHz 1.0MHz p(-V(out3)) Frequency [8-30] Mor M. Peretz, Switch-Mode Power Supplies The relationship to PID compensators        v K K s ω s ω c I d z1 z2      K s K p d v s K s e I V c V e   B dB V f f c Log(f) 1 2 V e   Log(f) dB f f 1 2 1 / B 15

  16. Mor M. Peretz, Switch-Mode Power Supplies [8-31] The relationship to PID compensators V o d A   dB dB 1/B - 40 dec dB Log(f) - 20 dec 1/B 1/B [8-32] Mor M. Peretz, Switch-Mode Power Supplies 16

  17. Mor M. Peretz, Switch-Mode Power Supplies [8-33] [5-34] Mor M. Peretz, Switch-Mode Power Supplies 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend