decomposition by operator splitting methods and
play

Decomposition by operator-splitting methods and applications in - PowerPoint PPT Presentation

Decomposition by operator-splitting methods and applications in image deblurring Daniel OConnor (Department of Mathematics, UCLA) Lieven Vandenberghe (Electrical Engineering, UCLA) Workshop on Optimization for Modern Computation BICMR,


  1. Decomposition by operator-splitting methods and applications in image deblurring Daniel O’Connor (Department of Mathematics, UCLA) Lieven Vandenberghe (Electrical Engineering, UCLA) Workshop on Optimization for Modern Computation BICMR, Beijing, September 2–4, 2014

  2. Primal-dual decomposition minimize f ( x ) + g ( Ax ) • f, g are ‘simple’ convex functions (indicators of simple sets, norms, . . . ) • A is a structured matrix • widely used format in literature on multiplier and splitting algorithms This talk: decomposition by splitting primal-dual optimality conditions � � � � � � A T 0 x ∂f ( x ) 0 ∈ + ∂g ∗ ( z ) − A 0 z and applications in image deblurring 1/30

  3. Models of image blur b = Kx + w • x is exact image, Kx is image blurred by blurring operator K • b is observed image, equal to blurred image plus noise w Space-invariant blur: structure of K depends on boundary conditions • periodic: WKW H is diagonal where W is 2D DFT matrix • zero/replicate: K = K c + K s with K c diagonalizable by DFT, K s sparse m � Space-varying blur (Nagy-O’Leary model): K = U i K i i =1 • K i : space-invariant blurring operators • U i : positive diagonal matrices that sum to identity 2/30

  4. Deblurring via convex optimization minimize φ f ( Kx − b ) + φ s ( Dx ) + φ r ( x ) Data fidelity term φ f • convex penalty, e.g. , squared 2-norm, 1-norm, Huber penalty, . . . • indicator for convex set, e.g. , 2-norm ball Smoothing term φ s • D is discretized first derivative, or a wavelet/shearlet transform matrix • φ s is a norm, e.g. , for total variation reconstruction, a sum of 2-norms n � � u 2 i + v 2 φ s ( u, v ) = γ � ( u, v ) � iso = γ i i =1 3/30

  5. Deblurring via convex optimization minimize φ f ( Kx − b ) + φ s ( Dx ) + φ r ( x ) Regularization term φ r • penalty on x • indicator for convex set, for example, { x | 0 ≤ x ≤ 1 } In composite form: minimize f ( x ) + g ( Ax ) with � � K f ( x ) = φ r ( x ) , A = , g ( u, v ) = φ f ( u − b ) + φ s ( v ) D 4/30

  6. Outline • Introduction • Douglas-Rachford splitting method • Primal-dual splitting • Space-varying blur

  7. Monotone operator A set-valued mapping F is monotone if ( u − v ) T ( y − x ) ≥ 0 , ∀ x, y ∈ dom F , u ∈ F ( x ) , v ∈ F ( y ) • subdifferential ∂f of closed convex function f • skew-symmetric linear operator, for example, � � � � A T 0 x F ( x, z ) = − A 0 z • sums of monotone operators, for example, � � � � � � A T 0 x ∂f ( x ) F ( x, z ) = + ∂g ∗ ( z ) − A 0 z 5/30

  8. Resolvent The resolvent of a monotone operator F is the operator ( I + t F ) − 1 (with t > 0 ) Properties (for maximal monotone F ) • y = ( I + t F ) − 1 ( x ) exists and is unique for all x • y is the (unique) solution of the inclusion problem x ∈ y + t F ( y ) Examples • resolvent of subdifferential ∂f is called proximal operator of f • for linear monotone F , resolvent ( I + t F ) − 1 is matrix inverse 6/30

  9. Proximal operator The proximal operator of a closed convex function f is the mapping � � f ( y ) + 1 2 t � y − x � 2 prox tf ( x ) = argmin 2 y Examples • f ( x ) = δ C ( x ) (indicator of closed convex set C ): Euclidean projection � y − x � 2 prox tf ( x ) = P C ( x ) = argmin 2 y • f ( x ) = � x � : shrinkage operation prox tf ( x ) = x − P tC ( x ) , C is unit ball for dual norm 7/30

  10. Calculus rules for proximal operators Separable function: if f ( x 1 , x 2 ) = f 1 ( x 1 ) + f 2 ( x 2 ) , then � � prox f ( x 1 , x 2 ) = prox f 1 ( x 1 ) , prox f 2 ( x 2 ) Moreau decomposition: relates prox-operators of conjugates prox tf ∗ ( x ) + t prox t − 1 f ( x/t ) = x Composition with affine mappig: f ( x ) = g ( Ax + b ) with AA T = aI prox f ( x ) = ( I − 1 aA T A ) x + 1 aA T � � prox ag ( Ax + b ) − b 8/30

  11. Douglas-Rachford splitting Problem: given maximal monotone operators A , B , solve 0 ∈ A ( x ) + B ( x ) Algorithm (Lions & Mercier, 1979) x + ( I + t A ) − 1 ( z ) = ( I + t B ) − 1 (2 x + − z ) y + = z + ρ ( y + − x + ) z + = • x converges under weak conditions (for any t > 0 and ρ ∈ (0 , 2) ) • useful when resolvents of A , B are inexpensive, but not resolvent of sum • includes other well-known algorithms as special cases ( e.g. , ADMM) 9/30

  12. Outline • Introduction • Douglas-Rachford splitting method • Primal-dual splitting • Space-varying blur

  13. Primal-dual splitting Composite problem and dual − f ∗ ( − A T z ) − g ∗ ( z ) minimize f ( x ) + g ( Ax ) maximize Primal-dual optimality conditions � � � � � � A T ∂f ( x ) 0 x 0 ∈ + ∂g ∗ ( z ) − A 0 z � �� � � �� � A ( x,z ) B ( x,z ) Resolvent computations • A : prox-operators of f and g • B : solution of a linear equation with coefficient I + t 2 A T A 10/30

  14. Example: constrained L1-TV deblurring minimize � Kx − b � 1 + γ � Dx � iso subject to 0 ≤ x ≤ 1 • Gaussian blur with salt-and-pepper noise; periodic boundary conditions • I + K T K + D T D diagonalizable by DFT • 1024 × 1024 image original blurred restored 11/30

  15. Primal Douglas-Rachford splitting Equivalent problem ( δ is indicator function of { 0 } ) minimize f ( x ) + g ( Ax ) − → minimize f ( x ) + g ( y ) + δ ( Ax − y ) � �� � � �� � F ( x,y ) G ( x,y ) Algorithm: Douglas-Rachford splitting applied to optimality conditions 0 ∈ ∂F ( x, y ) + ∂G ( x, y ) Resolvent computations • ∂F requires prox-operators of f , g • ∂G requires linear equation with coefficient I + A T A hence, similar complexity per iteration as primal-dual splitting 12/30

  16. Alternating direction method of multipliers (ADMM) Douglas-Rachford applied to dual, after introducing splitting variable u minimize f ( x ) + g ( Ax ) − → minimize f ( u ) + g ( y ) � � � � I u subject to x − = 0 A y ADMM: alternating minimization of augmented Lagrangian f ( u ) + g ( y ) + w T ( x − u ) + z T ( Ax − y ) + t � � � x − u � 2 2 + � Ax − y � 2 2 2 • minimization over x : linear equation with coefficient I + A T A • minimization over ( u, y ) : prox-operators of f , g hence, similar complexity per iteration as primal-dual splitting 13/30

  17. Chambolle-Pock method � � � � � � A T ∂f ( x ) 0 x 0 ∈ + ∂g ∗ ( z ) − A 0 z Algorithm z + x + ) = prox tg ∗ ( z + tA ¯ x + prox sf ( x − sA T z + ) = 2 x + − x x + ¯ = √ • convergence requires st < 1 / � A � 2 • no linear equations with A ; only multiplications with A and A T 14/30

  18. Convergence ( f ( x k ) − f ⋆ ) /f ⋆ 0 10 CP ADMM −1 primal DR 10 primal−dual DR −2 10 −3 10 −4 10 −5 10 −6 10 −7 10 0 200 400 600 800 1000 iteration number k ∼ 1 . 4 seconds per iteration for each method 15/30

  19. Additive structure in A − f ∗ ( − A T z ) − g ∗ ( z ) minimize f ( x ) + g ( Ax ) maximize • f , g have inexpensive prox-operators • A = B + C with structured B and C : equations with coefficients I + B T B, I + C T C are easy to solve, but not I + A T A Extended primal-dual optimality conditions       A T 0 0 0 I x ∂g ( y ) 0 0 − I 0 y       0 ∈  +       0 − A I 0 0 z      ∂f ∗ ( w ) − I 0 0 0 w 16/30

  20. Primal-dual splitting       B T 0 0 0 0 x ∂g ( y ) 0 0 0 0 y       0 ∈  +       0 − B 0 0 0 z      ∂f ∗ ( w ) 0 0 0 0 w � �� � A ( x,y,z,w )     C T 0 0 I x 0 0 − I 0 y     +     − C I 0 0 z     − I 0 0 0 w � �� � B ( x,y,z,w ) Resolvent computations • A : prox-operators of f , g , linear equation I + t 2 B T B t 2 (1+ t 2 ) 2 C T C • B : linear equation with coefficient I + 17/30

  21. TV-L1 deblurring with replicate boundary conditions minimize � ( K c + K s ) x − b � 1 + γ � ( D c + D s ) x � iso subject to 0 ≤ x ≤ 1 • K c , D c : operators for periodic boundary conditions • K s , D s : sparse correction for replicate boundary conditions blurry, noisy image deblurred using deblurred using periodic b.c. replicate b.c. 18/30

  22. Handling replicate boundary conditions K = K c + K s , D = D c + D s • K c , D c : operators assuming periodic boundary conditions • I + K T c K c + D T c D c is diagonalized by DFT • E = I + K T s K s + D T s D s is sparse 4 4 x 10 x 10 0 0 1 1 2 2 3 3 4 4 5 5 6 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 nz = 463680 nz = 592892 4 4 x 10 x 10 pattern of E Cholesky factor of E 19/30

  23. Primal Douglas-Rachford splitting Equivalent problem: introduce splitting variables ˜ x , ˜ y minimize f ( x ) + g ( y + ˜ y ) + δ ( x − ˜ x ) + δ ( Bx − y ) + δ ( C ˜ x − ˜ y ) � �� � � �� � F ( x, ˜ x,y, ˜ y ) G ( x, ˜ x,y, ˜ y ) and apply Douglas-Rachford method to find zero of 0 ∈ ∂F ( x, ˜ x, y, ˜ y ) + ∂G ( x, ˜ x, y, ˜ y ) Resolvent computations • ∂F : require prox-operators of f , g • ∂G : linear equations with coefficients I + B T B , I + C T C more variables but similar complexity per iteration as primal-dual splitting 20/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend