composition and splitting methods
play

Composition and Splitting Methods Book Sections II.4 and II.5 - PowerPoint PPT Presentation

Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Composition and Splitting Methods Book Sections II.4 and II.5 Claude Gittelson Seminar on Geometric Numerical Integration 21.11.2005 Preliminaries The


  1. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Composition and Splitting Methods Book Sections II.4 and II.5 Claude Gittelson Seminar on Geometric Numerical Integration 21.11.2005

  2. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Outline The Adjoint of a Method 1 Definition Properties Composition Methods 2 Definition Order Increase Splitting Methods 3 Idea Examples Connection to Composition Methods

  3. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Preliminaries Notation autonomous differential equation y = f ( y ) , ˙ y ( t 0 ) = y 0 , its exact flow ϕ t , and numerical method Φ h , i.e. y 1 = Φ h ( y 0 ) .

  4. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Preliminaries Notation Basic Facts autonomous differential ϕ h ( y ) = y + O ( h ) equation p : order of Φ h e := Φ h ( y ) − ϕ h ( y ) error y = f ( y ) , ˙ y ( t 0 ) = y 0 , e = C ( y ) h p + 1 + O ( h p + 2 ) its exact flow ϕ t , and numerical method Φ h , i.e. y 1 = Φ h ( y 0 ) .

  5. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Definition of the Adjoint Method Definition The adjoint of Φ h is h := Φ − 1 Φ ∗ − h . It is defined implicitly by y 1 = Φ ∗ h ( y 0 ) iff y 0 = Φ − h ( y 1 ) . Φ h is symmetric, if Φ ∗ h = Φ h .

  6. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Properties of the Adjoint Method Remark Note that ϕ − 1 − t = ϕ t , but in h = Φ − 1 general Φ ∗ − h � = Φ h . The adjoint method h ) ∗ = Φ h and satisfies (Φ ∗ (Φ h ◦ Ψ h ) ∗ = Ψ ∗ h ◦ Φ ∗ h .

  7. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Properties of the Adjoint Method Remark Note that ϕ − 1 − t = ϕ t , but in h = Φ − 1 general Φ ∗ − h � = Φ h . The adjoint method h ) ∗ = Φ h and satisfies (Φ ∗ (Φ h ◦ Ψ h ) ∗ = Ψ ∗ h ◦ Φ ∗ h . Example ( explicit Euler ) ∗ = implicit Euler ( implicit midpoint ) ∗ = implicit midpoint

  8. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Order of the Adjoint Method Theorem If Φ h has order p and satisfies 1 Φ h ( y 0 ) − ϕ h ( y 0 ) = C ( y 0 ) h p + 1 + O ( h p + 2 ) , then Φ ∗ h also has order p and satisfies h ( y 0 ) − ϕ h ( y 0 ) = ( − 1 ) p C ( y 0 ) h p + 1 + O ( h p + 2 ) . Φ ∗ In particular, if Φ h is symmetric, its order is even. 2

  9. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Definition of Composition Methods Definition Let Φ 1 h , . . . , Φ s h be one step methods. Composition Ψ h := Φ s γ s h ◦ . . . ◦ Φ 1 γ 1 h , where γ 1 , . . . , γ s ∈ R . Example Φ 1 h = . . . = Φ s h =: Φ h 1 Φ 2 k h = Φ h and Φ 2 k − 1 = Φ ∗ 2 h h

  10. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Order Increase of General Composition Methods Theorem Let Ψ h := Φ s γ s h ◦ . . . ◦ Φ 1 γ 1 h with Φ k h of order p and h ( y ) − ϕ h ( y ) = C k ( y ) h p + 1 + O ( h p + 2 ) . Φ k If γ 1 + . . . + γ s = 1 , then Ψ h has order p + 1 if and only if γ p + 1 C 1 ( y ) + . . . + γ p + 1 C s ( y ) = 0 . s 1

  11. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Order Increase of Compositions of a Single Method Corollary If Ψ h = Φ γ s h ◦ . . . ◦ Φ γ 1 h , then the conditions are γ 1 + . . . + γ s = 1 γ p + 1 + . . . + γ p + 1 = 0 . s 1 Remark A solution only exists if p is even.

  12. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Order Increase of Compositions of a Single Method Corollary Example If Ψ h = Φ γ s h ◦ . . . ◦ Φ γ 1 h , then s = 3 , Φ h symmetric, order p = 2 , γ 1 = γ 3 . the conditions are Then Ψ h = Φ γ 3 h ◦ Φ γ 2 h ◦ Φ γ 1 h is γ 1 + . . . + γ s = 1 also symmetric, order ≥ 3 . γ p + 1 + . . . + γ p + 1 Symmetric ⇒ order even ⇒ = 0 . s 1 order 4 . So repeated application is possible. Remark A solution only exists if p is even.

  13. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Order Increase of Compositions with the Adjoint Method Corollary If Ψ h = Φ α s h ◦ Φ ∗ β s h ◦ . . . ◦ Φ ∗ β 2 h ◦ Φ α 1 h ◦ Φ ∗ β 1 h , then the conditions are β 1 + α 1 + . . . + β s + α s = 1 ( − 1 ) p β p + 1 + α p + 1 + . . . + ( − 1 ) p β p + 1 + α p + 1 = 0 . 1 1 s s Example Ψ h := Φ h 2 ◦ Φ ∗ 2 is symmetric, order p + 1 . h Φ h explicit Euler ⇒ Ψ h implicit midpoint Φ h implicit Euler ⇒ Ψ h trapezoidal rule

  14. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Idea: Split the Vector Field Idea Split the vector field f into y = f ( y ) = f [ 1 ] ( y ) + f [ 2 ] ( y ) + . . . + f [ N ] ( y ) ˙ Calculate exact flow ϕ [ i ] y = f [ i ] explicitly t of ˙ Use “composition” of ϕ [ i ] h to solve ˙ y = f ( y ) , e.g. Ψ h = ϕ [ 1 ] a s h ◦ ϕ [ 2 ] b s h ◦ . . . ◦ ϕ [ 1 ] a 1 h ◦ ϕ [ 2 ] b 1 h

  15. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Motivation Example y = ( a + b ) y , then ϕ a t ( y 0 ) = e at y 0 and ϕ b t ( y 0 ) = e bt y 0 , so ˙ ( ϕ a t ◦ ϕ b t )( y 0 ) = e at e bt y 0 = e ( a + b ) t y 0 = ϕ t ( y 0 )

  16. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Motivation Example y = ( a + b ) y , then ϕ a t ( y 0 ) = e at y 0 and ϕ b t ( y 0 ) = e bt y 0 , so ˙ ( ϕ a t ◦ ϕ b t )( y 0 ) = e at e bt y 0 = e ( a + b ) t y 0 = ϕ t ( y 0 ) Lie-Trotter Formula for A , B ∈ C N × N . y = ( A + B ) y ˙ ϕ A t ( y 0 ) = e At y 0 ϕ B t ( y 0 ) = e Bt y 0 and � n � e A t n e B t = e ( A + B ) t Lie Trotter formula lim n n →∞ � n � ϕ A n ◦ ϕ B so ( y 0 ) → ϕ t ( y 0 ) t t n

  17. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Examples of Splittings Example (Lie-Trotter Splitting) ϕ [ 1 ] h ◦ ϕ [ 2 ] Φ h = h ϕ [ 2 ] h ◦ ϕ [ 1 ] Φ ∗ = h h

  18. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Examples of Splittings Example (Lie-Trotter Splitting) Example (Strang Splitting) ϕ [ 1 ] h ◦ ϕ [ 2 ] Φ h = h Φ h = ϕ [ 1 ] 2 ◦ ϕ [ 2 ] h ◦ ϕ [ 1 ] 2 = Φ ∗ ϕ [ 2 ] h ◦ ϕ [ 1 ] Φ ∗ = h h h h h

  19. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Application to Separable Hamiltonian Systems Example Separable Hamiltonian H ( p , q ) = T ( p ) + U ( q ) � 0 � ˙ � � − H q � � � − U q � p = = + q ˙ H p T p 0

  20. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Application to Separable Hamiltonian Systems Example Separable Hamiltonian H ( p , q ) = T ( p ) + U ( q ) � 0 � ˙ � � − H q � � � − U q � p = = + q ˙ H p T p 0 Exact flows � p 0 � � � � p 0 � � p 0 − t U q ( q 0 ) � p 0 ϕ T ϕ U = , = t t q 0 q 0 + t T p ( p 0 ) q 0 q 0

  21. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Application to Separable Hamiltonian Systems Example Separable Hamiltonian H ( p , q ) = T ( p ) + U ( q ) � 0 � ˙ � � − H q � � � − U q � p = = + q ˙ H p T p 0 Exact flows � p 0 � � � � p 0 � � p 0 − t U q ( q 0 ) � p 0 ϕ T ϕ U = , = t t q 0 q 0 + t T p ( p 0 ) q 0 q 0 Lie-Trotter splitting Φ h = ϕ T h ◦ ϕ U h = p n − h · U q ( q n ) p n + 1 = q n + h · T p ( p n + 1 ) q n + 1

  22. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Application to Separable Hamiltonian Systems Example Separable Hamiltonian H ( p , q ) = T ( p ) + U ( q ) � 0 � ˙ � � − H q � � � − U q � p = = + q ˙ H p T p 0 Exact flows � p 0 � � � � p 0 � � p 0 − t U q ( q 0 ) � p 0 ϕ T ϕ U = , = t t q 0 q 0 + t T p ( p 0 ) q 0 q 0 Lie-Trotter splitting Φ h = ϕ T h ◦ ϕ U h � symplectic Euler = p n − h · U q ( p n + 1 , q n ) p n + 1 = q n + h · T p ( p n + 1 , q n ) q n + 1

  23. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Construction as a Composition Method Lemma Φ [ i ] y = f [ i ] ( y ) . h consistent method for ˙ Φ h := Φ [ 1 ] h ◦ Φ [ 2 ] h ◦ . . . ◦ Φ [ N ] h , y = f ( y ) = f [ 1 ] ( y ) + f [ 2 ] ( y ) + . . . + f [ N ] ( y ) . then Φ h has order 1 for ˙

  24. Preliminaries The Adjoint of a Method Composition Methods Splitting Methods Summary Construction as a Composition Method Lemma Φ [ i ] y = f [ i ] ( y ) . h consistent method for ˙ Φ h := Φ [ 1 ] h ◦ Φ [ 2 ] h ◦ . . . ◦ Φ [ N ] h , y = f ( y ) = f [ 1 ] ( y ) + f [ 2 ] ( y ) + . . . + f [ N ] ( y ) . then Φ h has order 1 for ˙ Idea Compose Φ h , Φ ∗ h to construct method Ψ h of higher order. In the case N = 2 : Φ h = Φ [ 1 ] h ◦ Φ [ 2 ] h = Φ [ 2 ] ∗ ◦ Φ [ 1 ] ∗ h , Φ ∗ and h h Ψ h = Φ α s h ◦ Φ ∗ β s h ◦ . . . ◦ Φ ∗ β 2 h ◦ Φ α 1 h ◦ Φ ∗ β 1 h Φ [ 1 ] α s h ◦ Φ [ 2 ] α s h ◦ Φ [ 2 ] ∗ β s h ◦ Φ [ 1 ] ∗ β s h ◦ . . . ◦ Φ [ 2 ] α 1 h ◦ Φ [ 2 ] ∗ β 1 h ◦ Φ [ 1 ] ∗ = β 1 h

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend