cours aro07 mssd 4 random models of dynamical systems
play

cours ARO07MSSD #4 Random Models of Dynamical Systems Introduction - PowerPoint PPT Presentation

Stochastic differential equations Solution as a Markov process cours ARO07MSSD #4 Random Models of Dynamical Systems Introduction to SDEs Stochastic differential equations Fran cois Le Gland INRIA Rennes + IRMAR


  1. Stochastic differential equations Solution as a Markov process cours ARO07–MSSD #4 Random Models of Dynamical Systems Introduction to SDE’s Stochastic differential equations Fran¸ cois Le Gland INRIA Rennes + IRMAR people.rennes.inria.fr/Francois.Le_Gland/insa-rennes/ 8 December 2020, via Zoom 1 / 50

  2. Stochastic differential equations Solution as a Markov process Stochastic differential equations introduction, existence and uniqueness additional properties extension by localization Solution as a Markov process 2 / 50

  3. Stochastic differential equations Solution as a Markov process Definition, assumptions on the coefficients consider the equation ż t ż t X p t q “ X p 0 q ` b p s , X p s qq ds ` σ p s , X p s qq dB p s q 0 0 with a m –dimensional Brownian motion B “ p B p t q , t ě 0 q , and time–dependent coefficients: ‚ a d –dimensional drift vector b p t , x q defined on r 0 , 8q ˆ R d ‚ a d ˆ m diffusion matrix σ p t , x q defined on r 0 , 8q ˆ R d global Lipschitz condition: there exists a positive constant L ą 0 such that for any t ě 0 and any x , x 1 P R d | b p t , x q´ b p t , x 1 q| ď L | x ´ x 1 | } σ p t , x q´ σ p t , x 1 q} ď L | x ´ x 1 | and linear growth condition: there exists a positive constant K ą 0 such that for any t ě 0 and any x P R d | b p t , x q| ď K p 1 ` | x |q and } σ p t , x q} ď K p 1 ` | x |q 2 / 50

  4. Stochastic differential equations Solution as a Markov process a solution to the SDE is any process X in M 2 pr 0 , T sq such that the identity holds almost surely the condition that X is in M 2 pr 0 , T sq makes sure that the stochastic integral ż t σ p s , X p s qq dB p s q 0 defines a (true, square–integrable) martingale: indeed, the vector–valued stochastic integral makes sense iff for any v P R d , the one–dimensional stochastic integral ż t ż t v ˚ σ p s , X p s qq dB p s q v ˚ σ p s , X p s qq dB p s q “ 0 0 makes sense, i.e. iff ż T } σ p s , X p s qq σ ˚ p s , X p s qq} ds ă 8 E 0 and note that ż T ż T } σ p s , X p s qq σ ˚ p s , X p s qq} ds ď 2 K 2 E p 1 ` | X p s q| 2 q ds E 0 0 3 / 50

  5. Stochastic differential equations Solution as a Markov process Lemma [Gronwall lemma] if the nonnegative function u p t q satisfies the functional relation: for any t ě 0 and for some nonnegative constants a , c ě 0 ż t u p t q ď a ` c u p s q ds 0 then for any t ě 0 u p t q ď a exp t c t u Proof assume c ą 0 without loss of generality, and note that ż t ż t d dt r exp t´ c t u u p s q ds s “ exp t´ c t u r u p t q´ c u p s q ds s ď a exp t´ c t u 0 0 integration yields ż t ż t exp t´ c s u ds “ a exp t´ c t u u p s q ds ď a c p 1 ´ exp t´ c t uq 0 0 hence ż t u p s q ds ď a c p exp t c t u ´ 1 q l 0 4 / 50

  6. Stochastic differential equations Solution as a Markov process Lemma [sequential Gronwall lemma] if the nonnegative functions u n p t q satisfies the functional relation: for any t ě 0 and any n ě 1 and for some nonnegative constants a , c ě 0 ż t u n p t q ď a ` c u n ´ 1 p s q ds with u 0 p t q ” ¯ u 0 then for any t ě 0 and any n ě 1 u n p t q ď a exp t c t u ` p c t q n u ¯ n ! Remark the following uniform estimate holds p c t q n max n ě 1 u n p t q ď a exp t c t u ` r max s ¯ u n ! n ě 1 and asymptotically lim sup n Ñ8 u n p t q ď a exp t c t u 5 / 50

  7. Stochastic differential equations Solution as a Markov process Proof actually, the following stronger estimate is proved by induction u n p t q ď a r 1 ` c t ` ¨ ¨ ¨ ` p c t q n ´ 1 p n ´ 1 q ! s ` p c t q n u ď a exp t c t u ` p c t q n ¯ ¯ u n ! n ! clearly, the estimate holds for n “ 1 assuming that the estimate holds at stage p n ´ 1 q , then ż t u n p t q “ a ` c u n ´ 1 p s q ds 0 ż t ż t r 1 ` c s ` ¨ ¨ ¨ ` p c s q n ´ 2 p c s q n ´ 1 ď a r 1 ` c p n ´ 2 q ! s ds s ` r c p n ´ 1 q ! ds s ¯ u 0 0 “ a r 1 ` c t ` ¨ ¨ ¨ ` p c t q n ´ 1 p n ´ 1 q ! s ` p c t q n u ¯ n ! i.e. the estimate holds at stage n l 6 / 50

  8. Stochastic differential equations Solution as a Markov process simple (yet useful) formula ż t ż t ψ p s q ds | p ď t p ´ 1 | ψ p s q| p ds | 0 0 hence (taking ψ p s q “ φ 2 p s q and using p { 2 in place of p ) ż t ż t | φ p s q| 2 ds q p { 2 ď t p { 2 ´ 1 | φ p s q| p ds p 0 0 older inequality for conjugate exponents p , p 1 yields Proof using the H¨ ż t ż t ż t 1 p 1 ds q 1 { p 1 p | ψ p s q| p ds q 1 { p | ψ p s q ds | ď p 0 0 0 and note that p { p 1 “ p ´ 1 l 7 / 50

  9. Stochastic differential equations Solution as a Markov process Existence and uniqueness of a solution Theorem 1 under the global Lipschitz and linear growth conditions, and for any square–integrable initial condition X p 0 q , there exists a unique solution to the SDE ż t ż t X p t q “ X p 0 q ` b p s , X p s qq ds ` σ p s , X p s qq dB p s q 0 0 Proof uniqueness: let X “ p X p t q , t ě 0 q and X 1 “ p X 1 p t q , t ě 0 q be two solutions, with the same initial condition X p 0 q “ X 1 p 0 q by difference, for any 0 ď t ď T ż t | X p t q ´ X 1 p t q| ď | b p s , X p s qq ´ b p s , X 1 p s qq ds | 0 ż t p σ p s , X p s qq ´ σ p s , X 1 p s qqq dB p s q | ` | 0 8 / 50

  10. Stochastic differential equations Solution as a Markov process hence ż t E | X p t q ´ X 1 p t q| 2 ď 2 E | p b p s , X p s qq ´ b p s , X 1 p s qqq ds | 2 0 ż t p σ p s , X p s qq ´ σ p s , X 1 p s qqq dB p s q | 2 ` 2 E | 0 ż t | b p s , X p s qq ´ b p s , X 1 p s qq| 2 ds ď 2 t E 0 ż t } σ p s , X p s qq ´ σ p s , X 1 p s qq} 2 ds ` 2 E 0 ż t ď 2 L 2 p T ` 1 q E | X p s q ´ X 1 p s q| 2 ds 0 it follows from the Gronwall lemma that for any 0 ď t ď T E | X p t q ´ X 1 p t q| 2 “ 0 9 / 50

  11. Stochastic differential equations Solution as a Markov process Picard iteration: for n “ 0, let X 0 p t q ” X p 0 q for any 0 ď t ď T , and for any n ě 1 consider the Itˆ o process ż t ż t X n p t q “ X p 0 q ` b p s , X n ´ 1 p s qq ds ` σ p s , X n ´ 1 p s qq dB p s q 0 0 no localization is needed here, thanks to the following a priori estimate: there exists a positive constant M p T q such that for any n ě 1 E | X n p t q| 2 ď M p T q sup ( ‹ ) 0 ď t ď T clearly, the estimate holds for n “ 0, and by induction if the estimate holds at stage p n ´ 1 q , then ż t ż t p 1 ` | X n ´ 1 p s q|q 2 ds } σ p s , X n ´ 1 p s qq σ ˚ p s , X n ´ 1 p s qq} ds ď K 2 E E 0 0 ż t ď 2 K 2 p t ` E | X n ´ 1 p s q| 2 ds q 0 in other words: the integrand s ÞÑ σ p s , X n ´ 1 p s qq belongs to M 2 pr 0 , T sq 10 / 50

  12. Stochastic differential equations Solution as a Markov process a priori estimate: ż t ż t | X n p t q| ď | X p 0 q| ` | b p s , X n ´ 1 p s qq ds | ` | σ p s , X n ´ 1 p s qq dB p s q| 0 0 and E | X n p t q| 2 ´ 3 E | X p 0 q| 2 ż t ż t b p s , X n ´ 1 p s qq ds | 2 ` 3 E | σ p s , X n ´ 1 p s qq dB p s q| 2 ď 3 E | 0 0 ż t ż t | b p s , X n ´ 1 p s qq| 2 ds ` 3 E } σ p s , X n ´ 1 p s qq} 2 ds ď 3 t E 0 0 ż t ż t ď 6 K 2 t E p 1 ` | X n ´ 1 p s q| 2 q ds ` 6 K 2 E p 1 ` | X n ´ 1 p s q| 2 q ds 0 0 ż t ď 6 K 2 T p T ` 1 q ` 6 K 2 p T ` 1 q E | X n ´ 1 p s q| 2 ds 0 11 / 50

  13. Stochastic differential equations Solution as a Markov process in other words, the sequence u n p t q “ E | X n p t q| 2 satisfies the functional relation ż t u 0 p t q ” E | X p 0 q| 2 u n p t q ď a p T q ` c p T q u n ´ 1 p s q ds with 0 it follows from the sequential Gronwall lemma that E | X n p t q| 2 ď a p T q exp t c p T q T u ` p c p T q T q n E | X p 0 q| 2 sup n ! 0 ď t ď T which proves the a priori estimate ( ‹ ) where the bound n ě 1 rp c p T q T q n s E | X p 0 q| 2 M p T q “ a p T q exp t c p T q T u ` max n ! depends on T , K and E | X p 0 q| 2 , and does not depend on L 12 / 50

  14. Stochastic differential equations Solution as a Markov process uniform a priori estimate: ż s ż s | X n p s q| ď | X p 0 q| ` | b p u , X n ´ 1 p u qq du | ` | σ p u , X n ´ 1 p u qq dB p u q| 0 0 uniform upper bound ż s sup | X n p s q| ď | X p 0 q| ` sup | b p u , X n ´ 1 p u qq du | 0 ď s ď t 0 ď s ď t 0 ż s ` sup | σ p u , X n ´ 1 p u qq dB p u q| 0 ď s ď t 0 13 / 50

  15. Stochastic differential equations Solution as a Markov process using the Doob inequality yields | X n p s q| 2 s ´ 3 E | X p 0 q| 2 E r sup 0 ď s ď t ż s ż s b p u , X n ´ 1 p u qq du | 2 s ` 3 E r sup σ p u , X n ´ 1 p u qq dB p u q| 2 s ď 3 E r sup | | 0 ď s ď t 0 ď s ď t 0 0 ż s ż t | b p u , X n ´ 1 p u qq| 2 du s ` 12 E } σ p s , X n ´ 1 p s qq} 2 ds ď 3 t E r sup 0 ď s ď t 0 0 ż t ż t ď 6 K 2 t E p 1 ` | X n ´ 1 p s q| 2 q ds ` 24 K 2 E p 1 ` | X n ´ 1 p s q| 2 q ds 0 0 ż t ď 6 K 2 T p T ` 4 q ` 6 K 2 p T ` 4 q | X n ´ 1 p u q| 2 s ds E r sup 0 ď u ď s 0 14 / 50

  16. Stochastic differential equations Solution as a Markov process in other words, the sequence | X n p s q| 2 s u n p t q “ E r sup ¯ 0 ď s ď t satisfies the functional relation ż t u 0 p t q ” E | X p 0 q| 2 u n p t q ď ¯ ¯ a p T q ` ¯ c p T q u n ´ 1 p s q ds ¯ with ¯ 0 it follows from the sequential Gronwall lemma that the stronger uniform a priori estimate holds c p T q T q n n ě 1 rp ¯ | X n p t q| 2 s ď ¯ s E | X p 0 q| 2 E r sup a p T q exp t ¯ c p T q T u ` max n ! 0 ď t ď T where the bound depends on T , K and E | X p 0 q| 2 , and does not depend on L 15 / 50

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend