dynamical analysis of euclidean algorithms
play

Dynamical analysis of euclidean algorithms Introduction Dynamical - PowerPoint PPT Presentation

Dynamical analysis of euclidean algorithms Beno t Daireaux Dynamical analysis of euclidean algorithms Introduction Dynamical analysis of euclidean algorithms Beno t Daireaux Application to accelerated GREYC, Universit e


  1. Dynamical analysis of euclidean algorithms Benoˆ ıt Daireaux Dynamical analysis of euclidean algorithms Introduction Dynamical analysis of euclidean algorithms Benoˆ ıt Daireaux Application to accelerated GREYC, Universit´ e de Caen algorithms Joint works with Lo¨ ıck Lohte, V´ eronique Maume-Deschamps et Brigitte Analyse de Vall´ ee l’algorithme LSB Conclusion LORIA, Nancy march 23rd 2006 1 / 51

  2. Dynamical analysis of euclidean Outline of the talk algorithms Benoˆ ıt Daireaux Introduction 1 Introduction Dynamical analysis of euclidean algorithms 2 Dynamical analysis of euclidean algorithms Application to accelerated algorithms 3 Application to accelerated algorithms Analyse de l’algorithme LSB Conclusion 4 Analyse de l’algorithme LSB 5 Conclusion 2 / 51

  3. Dynamical analysis of euclidean Gcd computation algorithms Benoˆ ıt Daireaux Integer gcd computation: Introduction Integer gcd • gave rise to the eldest known algorithm... algorithms State of the art • most complex of basic arithmetic operations Dynamical analysis of • intensively used in many areas: cryptography, computer euclidean algorithms algebra, rational computations... Application to accelerated algorithms Analyse de l’algorithme Analyses of the algorithms: LSB Conclusion • worst-case analyses not very usefull • average-case analysis ∼ theoretical colement to experiments, helps to understand the mecanisms of the algorithms 3 / 51

  4. Dynamical analysis of euclidean Many families of algorithms algorithms Benoˆ ıt Daireaux Introduction “Basics algorithms” (= sequence of divisions) Integer gcd algorithms • MSB algorithms(Most Significant Bits) State of the art Euclid and its variants: Centered, α -euclideans, Dynamical analysis of By-Excess... euclidean algorithms • LSB algorithms (Least Significant Bits) Application to accelerated • Mixed algorithms algorithms Binary, Plus-Minus et generalisations Analyse de l’algorithme LSB Conclusion Accelerated algorithms (= simulation of the divisions on a truncated part of the integers) • Lehmer-Euclide, Knuth-Sch¨ onhage, recursive LSB 4 / 51

  5. Dynamical analysis of euclidean State of the art algorithms Benoˆ ıt Daireaux Introduction Average case analysis Integer gcd Digit cost Bit comp. algorithms Euclid [Dix70], [Hei69], [Va] [AV00], [Val00], State of the art MSB Variants [YK75],[Rie78], [Val03] [Val00] Dynamical α -euclideans [BDV02] [BDV02] analysis of LSB [DMDV05] [DMDV05] euclidean algorithms Mixed Binary [Bre76], [Va98a] [Va98a] Lehmer [DV04] [DV04] Application to Accelerated Knuth-Sch¨ onhage [DLMV06] [DLMV06] accelerated algorithms Analyse de Distributional analysis l’algorithme Digit cost Bit Comp. LSB Euclid [Hen94], [BV04], [Lho05], MSB Variants [BV04] Conclusion α -euclideans LSB Mixed Binary Accelerated Lehmer 5 / 51

  6. Dynamical analysis of 1 Introduction euclidean algorithms Integer gcd algorithms Benoˆ ıt State of the art Daireaux Introduction 2 Dynamical analysis of euclidean algorithms Dynamical General principle analysis of euclidean An example: Euclid algorithm algorithms General principle An example: Euclid algorithm 3 Application to accelerated algorithms Application to The Knuth-Sch¨ onhage algorithm accelerated algorithms Interrupted algorithms Analyse de l’algorithme LSB 4 Analyse de l’algorithme LSB Conclusion Extension continue Produits de matrices al´ eatoires 5 Conclusion 6 / 51

  7. Dynamical analysis of euclidean Dynamical analysis: general algorithms Benoˆ ıt principle Daireaux A dynamical analysis has 3 steps: Introduction Dynamical analysis of euclidean algorithms 1 Modelization into a dynamical system: General principle An example: Extension of divisions to a continuous world Euclid algorithm Application to accelerated algorithms 2 Study of the continuous model Analyse de Statistical properties, evolution of densities, operators l’algorithme LSB Conclusion 3 Return to the discrete model 7 / 51

  8. Dynamical analysis of euclidean Dynamical analysis: general algorithms Benoˆ ıt principle Daireaux Algorithmes Systèmes Introduction euclidiens dynamiques Dynamical analysis of euclidean algorithms General principle An example: Euclid algorithm Application to Séries Opérateurs génératrices de transfert accelerated algorithms Analyse de l’algorithme LSB Conclusion Étude Étude analytique spectrale Extraction de coefficients Comportement probabiliste de l’algorithme 7 / 51

  9. Dynamical analysis of euclidean Euclid algorithm algorithms Benoˆ ıt Let ( u , v ) be an input of the algorithm, u ≥ v . Daireaux • The algorithm performs the sequence of divisions Introduction Dynamical u 0 = u 1 q 1 + u 2 , u 1 = u 2 q 2 + u 3 , . . . u p − 1 = u p q p + 0 , analysis of euclidean � u i � algorithms General principle q i +1 = An example: u i +1 Euclid algorithm � 0 � Application to 1 accelerated • With Q = the algorithm computes the algorithms 1 q Analyse de sequence l’algorithme LSB Conclusion M i := Q 1 · Q 2 · Q 3 · · · Q i • in particular one has � u 1 � u i +1 � � = M i · u 0 u i 8 / 51

  10. Dynamical analysis of euclidean Number of iterations of the Euclid algorithms Benoˆ ıt algorithm Daireaux Study of the number of iterations P ( u , v ) on the sets Introduction Dynamical Ω := { ( u , v ) , u > v ≥ 0 , pgcd( u , v ) = 1 } , analysis of euclidean algorithms Ω N := { ( u , v ) ∈ Ω , ℓ 2 ( u ) = N } General principle An example: Euclid algorithm Application to accelerated algorithms Analyse de l’algorithme LSB Conclusion 9 / 51

  11. Dynamical analysis of euclidean Number of iterations of the Euclid algorithms Benoˆ ıt algorithm Daireaux Study of the number of iterations P ( u , v ) on the sets Introduction Dynamical Ω := { ( u , v ) , u > v ≥ 0 , pgcd( u , v ) = 1 } , analysis of euclidean algorithms Ω N := { ( u , v ) ∈ Ω , ℓ 2 ( u ) = N } General principle An example: Euclid algorithm Generating functions: Application to accelerated � P ( u , v ) algorithms • F ( s ) = Analyse de u s l’algorithme ( u , v ) ∈ Ω LSB Conclusion 9 / 51

  12. Dynamical analysis of euclidean Number of iterations of the Euclid algorithms Benoˆ ıt algorithm Daireaux Study of the number of iterations P ( u , v ) on the sets Introduction Dynamical Ω := { ( u , v ) , u > v ≥ 0 , pgcd( u , v ) = 1 } , analysis of euclidean algorithms Ω N := { ( u , v ) ∈ Ω , ℓ 2 ( u ) = N } General principle An example: Euclid algorithm Generating functions: Application to accelerated � � f n algorithms • F ( s ) = f n = P ( u , v ) Analyse de n s l’algorithme n ≥ 1 ( u , v ) ∈ Ω LSB u = n Conclusion 9 / 51

  13. Dynamical analysis of euclidean Number of iterations of the Euclid algorithms Benoˆ ıt algorithm Daireaux Study of the number of iterations P ( u , v ) on the sets Introduction Dynamical Ω := { ( u , v ) , u > v ≥ 0 , pgcd( u , v ) = 1 } , analysis of euclidean algorithms Ω N := { ( u , v ) ∈ Ω , ℓ 2 ( u ) = N } General principle An example: Euclid algorithm Generating functions: Application to accelerated � � f n algorithms • F ( s ) = f n = P ( u , v ) Analyse de n s l’algorithme n ≥ 1 ( u , v ) ∈ Ω LSB u = n Conclusion Average number of iterations on Ω N : 2 N � 1 • E N [ P ] = f k | Ω N | k =2 N − 1 9 / 51

  14. Dynamical analysis of euclidean Th´ eor` eme Taub´ erien algorithms Benoˆ ıt Th´ eor` eme Soit F ( s ) une s´ erie de Dirichlet ` a coefficients Daireaux positifs telle que F ( s ) converge pour ℜ ( s ) > σ > 0 . Si Introduction ( i ) F ( s ) est analytique pour ℜ ( s ) = σ, s � = σ , et Dynamical ( ii ) pour γ ≥ 0 , F ( s ) s’´ ecrit analysis of euclidean algorithms A ( s ) General principle F ( s ) = ( s − σ ) γ +1 + C ( s ) , An example: Euclid algorithm Application to u A ( s ) et C ( s ) sont analytiques en s = σ et A ( σ ) � = 0 , o` accelerated algorithms Analyticité Analyse de l’algorithme LSB Conclusion σ Singularité 10 / 51

  15. Dynamical analysis of euclidean Th´ eor` eme Taub´ erien algorithms Benoˆ ıt Th´ eor` eme Soit F ( s ) une s´ erie de Dirichlet ` a coefficients Daireaux positifs telle que F ( s ) converge pour ℜ ( s ) > σ > 0 . Si Introduction ( i ) F ( s ) est analytique pour ℜ ( s ) = σ, s � = σ , et Dynamical ( ii ) pour γ ≥ 0 , F ( s ) s’´ ecrit analysis of euclidean algorithms A ( s ) General principle F ( s ) = ( s − σ ) γ +1 + C ( s ) , An example: Euclid algorithm Application to u A ( s ) et C ( s ) sont analytiques en s = σ et A ( σ ) � = 0 , o` accelerated algorithms Alors, Analyse de l’algorithme 2 N LSB � f n = K γ,σ · 2 σ N · N γ · [1 + ǫ ( N ) ] , Conclusion n =2 N − 1 A ( σ ) σ Γ( γ + 1) (1 − 2 − σ )(2 log 2) γ , K γ,σ = lim N →∞ ǫ ( N ) = 0 . 10 / 51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend