a union of euclidean
play

A Union of Euclidean Spaces is Euclidean Konstantin Makarychev, - PowerPoint PPT Presentation

A Union of Euclidean Spaces is Euclidean Konstantin Makarychev, Northwestern Yury Makarychev, TTIC AMS Meeting, New York, May 7, 2017 Problem by Assaf Naor Suppose that metric space (, ) is a union of two metric spaces and


  1. A Union of Euclidean Spaces is Euclidean Konstantin Makarychev, Northwestern Yury Makarychev, TTIC AMS Meeting, New York, May 7, 2017

  2. Problem by Assaf Naor Suppose that metric space (π‘Œ, 𝑒) is a union of two metric spaces 𝐡 and 𝐢 that isometrically embed into β„“ 2 . Does π‘Œ necessarily embed into β„“ 2 with a constant distortion? 𝐡 β„“ 2 𝐢

  3. Motivation The problem is closely connected to research in theoretical computer science on β€œlocal -global properties” of metric spaces [Arora, LovΓ‘sz, Newman, Rabani, Rabinovich, Vempala `06; Charikar, M, Makarychev `07] Why are computer scientists interested? Results imply strong lower bounds for Sherali-Adams linear programming relaxations for many combinatorial optimization problems, including Sparsest Cut, Vertex Cover, Max Cut, Unique Games. [Charikar, M, Makarychev `09]

  4. Our Results Q: Suppose that metric space (π‘Œ, 𝑒) is a union of two metric spaces 𝐡 and 𝐢 that embed isometrically into β„“ 2 . Does π‘Œ necessarily embed into β„“ 2 with a constant distortion? A: Yes, π‘Œ embeds into β„“ 2 with distortion at most 8.93. 𝑏 with distortion 𝛽 , 𝐢 β†ͺ β„“ 2 𝑐 with distortion 𝛾 𝐡 β†ͺ β„“ 2 ⇓ 𝑏+𝑐+1 with distortion at most 11𝛽𝛾 π‘Œ = 𝐡 βˆͺ 𝐢 β†ͺ β„“ 2

  5. Approach This talk: consider the isometric case. πœ’ 1 : 𝐡 β†ͺ β„“ 2 πœ’ 2 : 𝐢 β†ͺ β„“ 2 We will define 3 maps: β€’ ΰ΄€ πœ’ 1 : 𝐡 βˆͺ 𝐢 β†ͺ β„“ 2 , a 7-Lipschitz extension of πœ’ 1 to π‘Œ β€’ ΰ΄€ πœ’ 2 : 𝐡 βˆͺ 𝐢 β†ͺ β„“ 2 , a 7-Lipschitz extension of πœ’ 2 to π‘Œ β€’ Ξ” 𝑦 = 𝑒 𝑦, 𝐡 βˆ’ 𝑒(𝑦, 𝐢) πœ” = ΰ΄€ πœ’ 1 βŠ• ΰ΄€ πœ’ 2 βŠ• Ξ”

  6. Approach πœ” = ΰ΄€ πœ’ 1 βŠ• ΰ΄€ πœ’ 2 βŠ• Ξ” Assume that we have β€’ ΰ΄€ πœ’ 1 : 𝐡 βˆͺ 𝐢 β†ͺ β„“ 2 , a 7-Lipschitz extension of πœ’ 1 to π‘Œ β€’ ΰ΄€ πœ’ 2 : 𝐡 βˆͺ 𝐢 β†ͺ β„“ 2 , a 7-Lipschitz extension of πœ’ 2 to π‘Œ β€’ Ξ” 𝑦 = 𝑒 𝑦, 𝐡 βˆ’ 𝑒(𝑦, 𝐢) First, 7 2 + 7 2 + 2 2 πœ” π‘€π‘—π‘ž = πœ’ 1 βŠ• ΰ΄€ ΰ΄€ πœ’ 2 βŠ• Ξ” π‘€π‘—π‘ž ≀ since Ξ” π‘€π‘—π‘ž ≀ 2 .

  7. Approach πœ” = ΰ΄€ πœ’ 1 βŠ• ΰ΄€ πœ’ 2 βŠ• Ξ” β€’ ΰ΄€ πœ’ 1 ensures that distances between points in 𝐡 don’t decrease: πœ’ 1 ȁ 𝐡 = πœ’ 1 is an isometric embedding of 𝐡 into β„“ 2 . ΰ΄€ β€’ ΰ΄€ πœ’ 2 ensures that distances between points in 𝐢 don’t decrease. β€’ Ξ” ensures that distances between points 𝑏 ∈ 𝐡 and 𝑐 ∈ 𝐢 don’t decrease by more than a constant factor.

  8. Approach πœ” = ΰ΄€ πœ’ 1 βŠ• ΰ΄€ πœ’ 2 βŠ• Ξ” 𝑏 𝐡 𝑏′ 𝑐 𝐢 If 𝑒 𝑏, 𝑏′ β‰ͺ 𝑒(𝑏, 𝑐) then πœ’ 2 𝑏 β€² πœ’ 2 (𝑏) βˆ’ ΰ΄€ ΰ΄€ πœ’ 2 (𝑐) β‰ˆ ΰ΄€ βˆ’ ΰ΄€ πœ’ 2 𝑐 = 𝑒 𝑏 β€² , 𝑐 β‰ˆ 𝑒(𝑏, 𝑐) If 𝑒 𝑏, 𝑏′ β‰ˆ 𝑒(𝑏, 𝑐) then β‰₯ 𝑒(𝑏, 𝑏 β€² ) β‰ˆ 𝑒(𝑏, 𝑐) Ξ”(𝑏) βˆ’ Ξ”(𝑐) 𝑏′ is the closest point to 𝑏 in 𝐢

  9. Approach πœ” = ΰ΄€ πœ’ 1 βŠ• ΰ΄€ πœ’ 2 βŠ• Ξ” 𝑏 𝐡 𝑐 𝑏′ 𝐢 If 𝑒 𝑏, 𝑏′ β‰ͺ 𝑒(𝑏, 𝑐) then πœ’ 2 𝑏 β€² πœ’ 2 (𝑏) βˆ’ ΰ΄€ ΰ΄€ πœ’ 2 (𝑐) β‰ˆ ΰ΄€ βˆ’ ΰ΄€ πœ’ 2 𝑐 = 𝑒 𝑏 β€² , 𝑐 β‰ˆ 𝑒(𝑏, 𝑐) If 𝑒 𝑏, 𝑏′ β‰ˆ 𝑒(𝑏, 𝑐) then β‰₯ 𝑒(𝑏, 𝑏 β€² ) β‰ˆ 𝑒(𝑏, 𝑐) Ξ”(𝑏) βˆ’ Ξ”(𝑐)

  10. Constructing maps ΰ΄€ πœ’ 1 and ΰ΄€ πœ’ 2 Goal: Given a map πœ’ ≑ πœ’ 2 : 𝐢 β†’ β„“ 2 find a Lipschitz extension ΰ΄€ πœ’: 𝐡 βˆͺ 𝐢 β†’ β„“ 2 of πœ’ . πœ’ ΰ΄€ 𝐡 β„“ 2 πœ’ 𝐢

  11. Constructing maps ΰ΄€ πœ’ 1 and ΰ΄€ πœ’ 2 Assume that 𝐢 βŠ‚ β„“ 2 and πœ’ = 𝑗𝑒 ; 𝐡 βˆͺ 𝐢 < ∞ . πœ’ ΰ΄€ β„“ 2 𝐡 𝐢

  12. Constructing map ΰ΄€ πœ’ Idea 1: map every 𝑏 to the closest 𝑏 β€² ∈ 𝐢 w.r.t. 𝑒 . Issue: the map may not be Lipschitz. πœ’ ΰ΄€ 𝑏′ 𝑏 𝐡 𝐢

  13. Cover for 𝐡 Let 𝑆 𝑏 = 𝑒 𝑏, 𝐢 for 𝑏 ∈ 𝐡 . 𝐷 βŠ‚ 𝐡 is a cover for 𝐡 if β€’ for every 𝑏 ∈ 𝐡 , there is 𝑑 ∈ 𝐷 s.t. 𝑒 𝑏, 𝑑 ≀ 𝑆 𝑏 and 𝑆 𝑑 ≀ 𝑆 𝑏 β€’ for every 𝑑, 𝑒 ∈ 𝐷 : 𝑒 𝑑, 𝑒 β‰₯ min 𝑆 𝑑 , 𝑆 𝑒 . 𝑆 𝑦 𝑆 𝑦 𝑏 𝑑 𝑑 𝑒 𝑏 ∈ 𝐡 is close to some 𝑑 ∈ 𝐷 points in 𝐷 are β€œseparated”

  14. Cover for 𝐡 Prove by induction that there is always a cover 𝑫 . Let 𝑑 ∈ 𝐡 be the point in 𝐡 with the least value of 𝑆 𝑑 . By induction, there is a cover 𝐷′ for 𝐡 βˆ– Ball 𝑑, 𝑆 𝑑 . Let 𝐷 = 𝐷 β€² βˆͺ {𝑑} . 𝐡

  15. Cover for 𝐡 Prove by induction that there is always a cover 𝑫 . Let 𝑑 ∈ 𝐡 be the point in 𝐡 with the least value of 𝑆 𝑑 . By induction, there is a cover 𝐷′ for 𝐡 βˆ– Ball 𝑑, 𝑆 𝑑 . Let 𝐷 = 𝐷 β€² βˆͺ {𝑑} . 𝑑

  16. Cover for 𝐡 Prove by induction that there is always a cover 𝑫 . Let 𝑑 ∈ 𝐡 be the point in 𝐡 with the least value of 𝑆 𝑑 . By induction, there is a cover 𝐷′ for 𝐡 βˆ– Ball 𝑑, 𝑆 𝑑 . Let 𝐷 = 𝐷 β€² βˆͺ {𝑑} . 𝑑

  17. Cover for 𝐡 Prove by induction that there is always a cover 𝑫 . Let 𝑑 ∈ 𝐡 be the point in 𝐡 with the least value of 𝑆 𝑑 . By induction, there is a cover 𝐷′ for 𝐡 βˆ– Ball 𝑑, 𝑆 𝑑 . Let 𝐷 = 𝐷 β€² βˆͺ {𝑑} . 𝑑

  18. Constructing map ΰ΄€ πœ’ Idea 2: map every 𝑑 ∈ 𝐷 to the closest 𝑑 β€² ∈ 𝐢 . The map is 4-Lipschitz. 𝑔 𝑑′ 𝑑 𝐡 𝐢

  19. Constructing map ΰ΄€ πœ’ Idea 2: map every 𝑑 ∈ 𝐷 to the closest 𝑑 β€² ∈ 𝐢 . The map is 4-Lipschitz. Assume 𝑆 𝑑 ≀ 𝑆 𝑒 . 𝑑′ 𝑑 𝑒 𝑒′ 𝐡 𝐢

  20. Constructing map ΰ΄€ πœ’ Idea 2: map every 𝑑 ∈ 𝐷 to the closest 𝑑 β€² ∈ 𝐢 . The map is 4-Lipschitz. Assume 𝑆 𝑑 ≀ 𝑆 𝑒 . 𝑑′ 𝑑 𝑒 𝑒′ 𝐡 𝐢

  21. Constructing map ΰ΄€ πœ’ Idea 2: map every 𝑑 ∈ 𝐷 to the closest 𝑑 β€² ∈ 𝐢 . The map is 4-Lipschitz. Assume 𝑆 𝑑 ≀ 𝑆 𝑒 . 𝑑′ 𝑑 𝑒 𝑒′ 𝐡 𝐢 𝑒 𝑑 β€² , 𝑒 β€² ≀ 2 𝑒 𝑑, 𝑒 + 2 𝑒 𝑑, 𝑑 β€² ≀ 4𝑒(𝑑, 𝑒)

  22. Kirszbraun Theorem Let 𝐷 βŠ‚ 𝐸 βŠ‚ β„“ 2 and 𝑔 be a Lipschitz map from 𝐷 to β„“ 2 . There exists an extension 𝑕: 𝐸 β†’ β„“ 2 of 𝑔 such 𝑕 π‘€π‘—π‘ž = 𝑔 π‘€π‘—π‘ž 𝐷 β„“ 2 𝐸

  23. Constructing map ΰ΄€ πœ’ Idea 2: map every 𝑑 ∈ 𝐷 to the closest 𝑑 β€² ∈ 𝐢 . Extend 𝑔 from 𝐷 to 𝐡 using the Kirszbraun theorem. 𝑔 𝑑′ 𝑑 𝐡 𝐢

  24. Constructing map ΰ΄€ πœ’ Idea 2: map every 𝑑 ∈ 𝐷 to the closest 𝑑 β€² ∈ 𝐢 . Extend 𝑔 from 𝐷 to 𝐡 using the Kirszbraun theorem. πœ’ 𝑣 = α‰Šπ‘” 𝑣 , if 𝑣 ∈ 𝐡 ΰ΄€ 𝑣, if 𝑣 ∈ 𝐢 πœ’ 𝑣 is 7-Lipschitz: ΰ΄€ β€’ ΰ΄€ πœ’Θ 𝐡 is 4-Lipschitz β€’ ΰ΄€ πœ’Θ 𝐢 is 1-Lipschitz β€’ πœ’ 𝑏 βˆ’ ΰ΄€ ΰ΄€ πœ’ 𝑐 = 𝑔(𝑏) βˆ’ 𝑐 ≀ β‹―

  25. Constructing map ΰ΄€ πœ’ 𝑐 𝑏 𝑔(𝑏) 𝑑 𝑔(𝑑) 𝐡 𝐢

  26. Constructing map ΰ΄€ πœ’ 𝑐 𝑏 𝑔(𝑏) ≀ 𝑆 𝑏 ≀ 4𝑆 𝑏 𝑆 𝑑 ≀ 𝑆 𝑏 𝑑 𝑔(𝑑) 𝐡 𝐢 𝑔 𝑏 βˆ’ 𝑐 ≀ 6𝑆 𝑏 + 𝑒 𝑏, 𝑐 ≀ 7𝑒(𝑏, 𝑐)

  27. Constructing map ΰ΄€ πœ’ 𝑐 𝑏 𝑔(𝑏) ≀ 𝑆 𝑏 ≀ 4𝑆 𝑏 𝑆 𝑑 ≀ 𝑆 𝑏 𝑑 𝑔(𝑑) 𝐡 𝐢 𝑔 𝑏 βˆ’ 𝑐 ≀ 6𝑆 𝑏 + 𝑒 𝑏, 𝑐 ≀ 7𝑒(𝑏, 𝑐) Q.E.D.

  28. Lower Bound There exists a metric space π‘Œ = 𝐡 βˆͺ 𝐢 s.t. β€’ 𝐡 and 𝐢 isometrically embed into β„“ 2 β€’ every embedding of π‘Œ into β„“ 2 has distortion at least 3 βˆ’ 𝜁 π‘œ , where π‘œ = 𝐡 = ȁ𝐢ȁ and 𝜁 π‘œ β†’ 0 as π‘œ β†’ ∞

  29. Open Problems 1. Find the least value of 𝐸 s.t. if 𝐡, 𝐢 β†ͺ β„“ 2 isometrically, then 𝐡 βˆͺ 𝐢 β†ͺ β„“ 2 with distortion at most 𝐸 . We know that 𝐸 ∈ 3, 8.93 . 2. Study the problem for other β„“ π‘ž . We conjecture that the answer is negative for every π‘ž βˆ‰ {2, ∞} . 3. What happens if π‘Œ = 𝐡 1 βˆͺ β‹― βˆͺ 𝐡 𝑙 and each 𝐡 𝑗 β†ͺ β„“ 2 isometrically? We only know that 𝑑 log 𝑙 ≀ 𝐸 ≀ 2 𝐷𝑙 . 4. Assume that every subset of π‘Œ of size Θπ‘ŒΘ isometrically embeds into β„“ 2 . What is the least distortion with which π‘Œ β†ͺ β„“ 2 ? More results and open problems in the paper!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend