fully spectral partial shape matching
play

Fully Spectral Partial Shape Matching Or Litany 1 , 2 a 3 Emanuele - PowerPoint PPT Presentation

Fully Spectral Partial Shape Matching Or Litany 1 , 2 a 3 Emanuele Rodol` Alexander Bronstein 1 , 2 , 4 Michael Bronstein 1 , 2 , 3 1 Tel Aviv University 2 Intel 3 USI Lugano 4 Technion Eurographics, 27 April 2017 1/30 3D sensing applications


  1. Fully Spectral Partial Shape Matching Or Litany 1 , 2 a 3 Emanuele Rodol` Alexander Bronstein 1 , 2 , 4 Michael Bronstein 1 , 2 , 3 1 Tel Aviv University 2 Intel 3 USI Lugano 4 Technion Eurographics, 27 April 2017 1/30

  2. 3D sensing applications LIDAR Velodyne HDL-64E (as in the Google Car); Intel RealSense R200 3D camera; FaceShift Inc. ; Me ; A cute baby 2/30

  3. 3D sensing applications Non-rigid deformations Limited view points LIDAR Velodyne HDL-64E (as in the Google Car); Intel RealSense R200 3D camera; FaceShift Inc. ; Me ; A cute baby 2/30

  4. Shape correspondence problem Isometric 3/30

  5. Shape correspondence problem Isometric Partial 3/30

  6. Shape correspondence problem Isometric Partial Topological noise 3/30

  7. Shape correspondence problem Isometric Partial Topological noise Different representation 3/30

  8. Shape correspondence problem Isometric Partial Topological noise Different representation Non-isometric 3/30

  9. Point-wise maps t y j x i X Y Point-wise maps t : X → Y 4/30

  10. Functional maps g f F ( X ) F ( Y ) T Functional maps T : F ( X ) → F ( Y ) Ovsjanikov et al. 2012 4/30

  11. Functional correspondence f ↓ T ↓ g Ovsjanikov et al. 2012 5/30

  12. Functional correspondence ≈ a 1 + a 2 + · · · + a k f ↓ T ↓ g ≈ b 1 + b 2 + · · · + b k Ovsjanikov et al. 2012 5/30

  13. Functional correspondence ≈ a 1 + a 2 + · · · + a k f ↓ ↓ Translates Fourier coefficients from Φ to Ψ T C ↓ ↓ g ≈ b 1 + b 2 + · · · + b k Ovsjanikov et al. 2012 5/30

  14. Functional correspondence ≈ a 1 + a 2 + · · · + a k f ↓ ↓ Φ ⊤ ≈ Translates Fourier coefficients from Φ to Ψ T Ψ k C k ↓ ↓ g ≈ b 1 + b 2 + · · · + b k Ψ ⊤ k g = CΦ ⊤ k f where Φ k = ( φ 1 , . . . , φ k ) , Ψ k = ( ψ 1 , . . . , ψ k ) are Laplace-Beltrami eigenbases Ovsjanikov et al. 2012 5/30

  15. Fourier analysis (non-Euclidean spaces) The Laplacian is invariant to isometries φ 1 φ 2 φ 3 φ 4 ψ 1 ψ 2 ψ 3 ψ 4 6/30

  16. Functional correspondence in Laplacian eigenbases C = Ψ ⊤ k TΦ k ⇒ c ij = � ψ i , Tϕ j � For isometric simple spectrum shapes, C is diagonal since ψ i = ± T φ i 7/30

  17. Part-to-full correspondence Full model Partial query 8/30

  18. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 9/30

  19. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 9/30

  20. Partial Laplacian eigenvectors Functional correspondence matrix C Slope ≈ ratio of the two surface areas Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 10/30

  21. Going fully spectral PFM has two major drawbacks: Explicit spatial indicator → runtime is O ( n ) solve ⇒ 11/30

  22. Going fully spectral PFM has two major drawbacks: Explicit spatial indicator → runtime is O ( n ) The partiality prior requires heavy engineering � 2 � � � ρ part ( v ) = µ 1 area( X ) − η ( v ) dx + µ 2 ξ ( v ) �∇ Y η ( v ) � dx Y Y � � η ( v ) − 1 ξ ( v ) = δ 2 η ( v ) = 1 2(tanh(2 v − 1) + 1) ρ corr ( C ) = µ 3 � C ◦ W � 2 � ( C ⊤ C ) 2 � (( C ⊤ C ) ii − d i ) 2 F + µ 4 ij + µ 5 i � = j i 11/30

  23. Going fully spectral PFM has two major drawbacks: Explicit spatial indicator → runtime is O ( n ) The partiality prior requires heavy engineering Our idea: “reorder” and spatially localize the eigenfunctions 11/30

  24. Going fully spectral PFM has two major drawbacks: Explicit spatial indicator → runtime is O ( n ) The partiality prior requires heavy engineering Our idea: “reorder” and spatially localize the eigenfunctions No indicator → Runtime is O ( k 2 ) 11/30

  25. Going fully spectral PFM has two major drawbacks: Explicit spatial indicator → runtime is O ( n ) The partiality prior requires heavy engineering Our idea: “reorder” and spatially localize the eigenfunctions No indicator → Runtime is O ( k 2 ) One-to-one correspondence yields a simple prior 11/30

  26. Localized basis functions φ 1 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 φ 10 ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 ψ 10 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 ψ 10 12/30

  27. Localization Energy minimized in PFM C ,v � CA − B ( v ) � + ρ corr ( C ) + ρ part ( v ) min v : N → [0 , 1] A = ( � φ i , f j � M ) B ( v ) = ( � ψ i , v · g j � N ) 13/30

  28. Localization Energy minimized in PFM min C ,v � CA − B ( v ) � + ρ corr ( C ) + ρ part ( v ) Satisfying the data-term induces a localizing map C 13/30

  29. Localization 14/30

  30. Localization 14/30

  31. Localization 14/30

  32. Localization 14/30

  33. Localization 15/30

  34. Localization W r ×� Ψ , F � = Q ⊤ ×� Φ , G � 15/30

  35. Localization W r ×� Ψ , F � = Q ⊤ ×� Φ , G � = � Q ⊤ Φ , G � = � ˆ Φ , G � 15/30

  36. Localized basis functions φ 1 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 φ 10 ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 ψ 10 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ψ 1 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 ψ 10 16/30

  37. Fully spectral partial correspondence Our problem Q ∈ S ( k,r ) off( Q ⊤ Λ N Q ) + µ � W r A − Q ⊤ B � 2 , 1 min 17/30

  38. Fully spectral partial correspondence Our problem Q ∈ S ( k,r ) off( Q ⊤ Λ N Q ) + µ � W r A − Q ⊤ B � 2 , 1 min Compute new basis functions as linear combinations of Laplace-Beltrami eigenfunctions 17/30

  39. Fully spectral partial correspondence Our problem Q ∈ S ( k,r ) off( Q ⊤ Λ N Q ) + µ � W r A − Q ⊤ B � 2 , 1 min Compute new basis functions as linear combinations of Laplace-Beltrami eigenfunctions Non-smooth optimization on the Stiefel manifold with k × r variables 17/30

  40. Fully spectral partial correspondence Our problem Q ∈ S ( k,r ) off( Q ⊤ Λ N Q ) + µ � W r A − Q ⊤ B � 2 , 1 min Compute new basis functions as linear combinations of Laplace-Beltrami eigenfunctions Non-smooth optimization on the Stiefel manifold with k × r variables Rank r controls amount of partiality 17/30

  41. Fully spectral partial correspondence Our problem Q ∈ S ( k,r ) off( Q ⊤ Λ N Q ) + µ � W r A − Q ⊤ B � 2 , 1 min Compute new basis functions as linear combinations of Laplace-Beltrami eigenfunctions Non-smooth optimization on the Stiefel manifold with k × r variables Rank r controls amount of partiality Descriptors control location of partiality 17/30

  42. Fully spectral partial correspondence Our problem Q ∈ S ( k,r ) off( Q ⊤ Λ N Q ) + µ � W r A − Q ⊤ B � 2 , 1 min Compute new basis functions as linear combinations of Laplace-Beltrami eigenfunctions Non-smooth optimization on the Stiefel manifold with k × r variables Rank r controls amount of partiality Descriptors control location of partiality Two-sided partiality ( P , Q ) ∈ S 2 ( k,r ) off( P ⊤ Λ M P ) + off( Q ⊤ Λ N Q ) + µ � P ⊤ A − Q ⊤ B � 2 , 1 min 17/30

  43. Importance of descriptors and rank (a) (b) (c) 18/30

  44. Importance of descriptors and rank (a) (b) (c) r/k = 0 . 1 r/k = 0 . 5 r/k = 1 . 0 (full) 18/30

  45. Geometric interpretation Full shape N Part M 19/30

  46. Geometric interpretation φ M 2 , φ M and φ N 3 , φ N Full shape N Laplacian eigenbasis 3 5 Part M 19/30

  47. Geometric interpretation φ M 2 , φ M and φ N 3 , φ N Full shape N Laplacian eigenbasis 3 5 and ˆ 2 , ˆ φ M 2 , φ M φ N φ N Part M New basis 3 3 19/30

  48. Animation 20/30

  49. Convergence example Initialization 75 150 700 4000 21/30

  50. Increasing partiality SPFM PFM rank = 36 rank = 23 rank = 7 22/30

  51. Robustness Ours PFM 23/30

  52. Runtime 200 SPFM Mean time per iteration (sec) PFM 150 100 50 0 1 10 20 30 40 Number of vertices ( × 10 4 ) 24/30

  53. SHREC’16 Partiality cuts holes 100 % Correspondences 80 60 40 20 0 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 Geodesic Error Geodesic Error FSPM JAD RF PFM IM EN GT 25/30

  54. SHREC’16 Topology 100 FSPM 80 % Correspondences PFM RF 60 GE EM 40 CO 20 0 0 0.05 0.1 0.15 0.2 0.25 Geodesic Error 26/30

  55. Correspondence examples: topological noise data: Bogo et al. 2014 (FAUST) 27/30

  56. Correspondence examples: topological noise data: Bogo et al. 2014 (FAUST) 27/30

  57. Correspondence examples: topological noise data: L¨ ahner et al. 2016 (SHREC) 27/30

  58. Correspondence examples: topological noise data: L¨ ahner et al. 2016 (SHREC) 27/30

  59. Partiality data: Cosmo et al. 2016 (SHREC) 28/30

  60. Failure cases 29/30

  61. Summary Simpler: localization is attained in the spectral domain 30/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend