computing and processing correspondences with functional
play

Computing and Processing Correspondences with Functional Maps Maks - PowerPoint PPT Presentation

Computing and Processing Correspondences with Functional Maps Maks Ovsjanikov 1 Etienne Corman 2 Michael Bronstein 3 , 4 , 5 a 3 Mirela Ben-Chen 6 Leonidas Guibas 7 Emanuele Rodol` eric Chazal 8 Alexander Bronstein 6 , 3 , 4 Fr ed 1 Ecole


  1. Joint diagonalization problem off( P ⊤ Λ M ,k ′ P ) + off( Q ⊤ Λ N ,k ′ Q ) + µ � P ⊤ A − Q ⊤ B � 2 , 1 min P , Q P ⊤ P = I Q ⊤ Q = I s . t . i � = j x 2 Off-diagonal elements penalty off( X ) = � ij Dirichlet energy off( X ) = trace( X ) for k ′ > k If Frobenius norm is used and k ′ = k , due to rotation invariance C = QP ⊤ is the functional correspondence matrix Robust norm � X � 2 , 1 = � j � x j � 2 allows coping with outliers Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013 7/52

  2. Example of joint diagonalization Mesh with 8.5K vertices Mesh with 850 vertices Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013 8/52

  3. Example of joint diagonalization Mesh with 8.5K vertices Point cloud with 850 vertices Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013 9/52

  4. Choice of the basis Functional correspondence matrix C expressed in standard Laplacian eigenbases Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013 10/52

  5. Choice of the basis Functional correspondence matrix C expressed in coupled approximate eigenbases Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013 10/52

  6. Multiple shapes C ij A i ≈ A j M j M p M i M 1 M 2 Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016 11/52

  7. Multiple shapes P ⊤ i A i ≈ P ⊤ j A j M j M p M i M 1 M 2 Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016 11/52

  8. Multiple shapes P ⊤ i A i ≈ P ⊤ j A j P j M j P i P p M p M i P 1 P 2 M 1 M 2 Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016 11/52

  9. Multiple shapes p � trace( P ⊤ � � P ⊤ i A i − P ⊤ min i Λ M i P i ) + µ j A j � P 1 ,..., P p i =1 i � = j P ⊤ s . t . i P i = I ‘Synchronization problem’ Matrices P 1 , . . . , P p orthogonally align the p eigenbases Kovnatsky, Bronstein 2 , Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016 12/52

  10. Computing Functional Maps with Manifold Optimization 13/52

  11. trace( P ⊤ ΛP ) + µ � PA − B � P ⊤ P = I min s . t . P 14/52

  12. trace( P ⊤ ΛP ) + µ � PA − B � P ⊤ P = I min s . t . P Optimization on the Stiefel manifold of orthogonal matrices 14/52

  13. Manifold optimization toy example: eigenvalue problem x ∈ R 3 x ⊤ Ax x ⊤ x = 1 min s . t . Minimization of a quadratic function on the sphere 15/52

  14. Manifold optimization toy example: eigenvalue problem x ∈ S (3 , 1) x ⊤ Ax min Minimization of a quadratic function on the sphere 15/52

  15. Optimization on the manifold: main idea X ( k ) X ( k +1) S Absil et al. 2009 16/52

  16. Optimization on the manifold: main idea ∇ f ( X ( k ) ) X ( k ) P X ( k ) ∇ S f ( X ( k ) ) T X ( k ) S S Absil et al. 2009 16/52

  17. Optimization on the manifold: main idea ∇ f ( X ( k ) ) X ( k ) P X ( k ) α ( k ) ∇ S f ( X ( k ) ) T X ( k ) S S Absil et al. 2009 16/52

  18. Optimization on the manifold: main idea ∇ f ( X ( k ) ) X ( k ) P X ( k ) α ( k ) ∇ S f ( X ( k ) ) T X ( k ) S R X ( k ) X ( k +1) S Absil et al. 2009 16/52

  19. Optimization on the manifold repeat Compute extrinsic gradient ∇ f ( X ( k ) ) Projection: ∇ S f ( X ( k ) ) = P X ( k ) ( ∇ f ( X ( k ) )) Compute step size α ( k ) along the descent direction −∇ S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( − α ( k ) ∇ S f ( X ( k ) )) k ← k + 1 until convergence ; Absil et al. 2009; Boumal et al. 2014 17/52

  20. Optimization on the manifold repeat Compute extrinsic gradient ∇ f ( X ( k ) ) Projection: ∇ S f ( X ( k ) ) = P X ( k ) ( ∇ f ( X ( k ) )) Compute step size α ( k ) along the descent direction −∇ S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( − α ( k ) ∇ S f ( X ( k ) )) k ← k + 1 until convergence ; Projection P and retraction R operators are manifold-dependent Absil et al. 2009; Boumal et al. 2014 17/52

  21. Optimization on the manifold repeat Compute extrinsic gradient ∇ f ( X ( k ) ) Projection: ∇ S f ( X ( k ) ) = P X ( k ) ( ∇ f ( X ( k ) )) Compute step size α ( k ) along the descent direction −∇ S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( − α ( k ) ∇ S f ( X ( k ) )) k ← k + 1 until convergence ; Projection P and retraction R operators are manifold-dependent Typically expressed in closed form Absil et al. 2009; Boumal et al. 2014 17/52

  22. Optimization on the manifold repeat Compute extrinsic gradient ∇ f ( X ( k ) ) Projection: ∇ S f ( X ( k ) ) = P X ( k ) ( ∇ f ( X ( k ) )) Compute step size α ( k ) along the descent direction −∇ S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( − α ( k ) ∇ S f ( X ( k ) )) k ← k + 1 until convergence ; Projection P and retraction R operators are manifold-dependent Typically expressed in closed form “Black box”: need to provide only f ( X ) and gradient ∇ f ( X ) Absil et al. 2009; Boumal et al. 2014 17/52

  23. Partial Functional Maps 18/52

  24. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 19/52

  25. Partial Laplacian eigenvectors Functional correspondence matrix C Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 20/52

  26. Perturbation analysis: intuition ¯ ¯ ¯ ∆ ¯ φ 1 φ 2 φ 3 M ∆ M φ 1 φ 2 φ 3 ¯ ¯ ¯ λ 1 λ 2 λ 3 M λ 1 λ 2 λ 3 ¯ M φ 1 φ 2 φ 3 ∆ M ¯ ¯ ¯ ∆ ¯ φ 1 φ 2 φ 3 M ¯ ¯ ¯ ≤ ≤ ≤ ≤ ≤ λ 1 λ 1 λ 2 λ 3 λ 2 λ 3 Ignoring boundary interaction: disjoint parts (block-diagonal matrix) Eigenvectors = Mixture of eigenvectors of the parts Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 21/52

  27. Perturbation analysis: eigenvalues 8 . 00 · 10 − 2 M 6 . 00 4 . 00 r k N 2 . 00 0 . 00 10 20 30 40 50 eigenvalue number k ≈ |M| Slope r |N | (depends on the area of the cut) Consistent with Weyl’s law Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 22/52

  28. Perturbation analysis: details ∆ M M t E ¯ ∆ M + t D M M t E ⊤ ∆ ¯ M + t D ¯ M ∆ ¯ M Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 23/52

  29. Perturbation analysis: boundary interaction strength 20 10 Value of f Eigenvector perturbation depends on length and position of the boundary Perturbation strength ≤ c � ∂ M f ( m ) dm , where n � 2 � φ i ( m ) φ j ( m ) � f ( m ) = λ i − λ j i,j =1 j � = i Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 24/52

  30. Partial functional maps Model shape M Query shape N T F Part M ⊆ M ≈ isometric to N Part Data f 1 , . . . , f q ∈ L 2 ( N ) M Query N g 1 , . . . , g q ∈ L 2 ( M ) Partial functional map ( T F f i )( m ) ≈ g i ( m ) , m ∈ M Model M Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 25/52

  31. Partial functional maps Model shape M Query shape N T F Part M ⊆ M ≈ isometric to N Part Data f 1 , . . . , f q ∈ L 2 ( N ) v Query N g 1 , . . . , g q ∈ L 2 ( M ) Partial functional map T F f i ≈ g i · v, v : M → [0 , 1] Model M Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 25/52

  32. Partial functional maps Model shape M Query shape N C Part M ⊆ M ≈ isometric to N Part Data f 1 , . . . , f q ∈ L 2 ( N ) v Query N g 1 , . . . , g q ∈ L 2 ( M ) Partial functional map ≈ B ( v ) , v : M → [0 , 1] CA � φ N � � A = i , f j � L 2 ( N ) � φ M � � Model M B ( v ) = i , g j · v � L 2 ( M ) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 25/52

  33. Partial functional maps Model shape M Query shape N C Part M ⊆ M ≈ isometric to N Part Data f 1 , . . . , f q ∈ L 2 ( N ) v Query N g 1 , . . . , g q ∈ L 2 ( M ) Partial functional map ≈ B ( v ) , v : M → [0 , 1] CA � φ N � � A = i , f j � L 2 ( N ) � φ M � � Model M B ( v ) = i , g j · v � L 2 ( M ) Optimization problem w.r.t. correspondence C and part v min C ,v � CA − B ( v ) � 2 , 1 + ρ corr ( C ) + ρ part ( v ) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 25/52

  34. Partial functional maps min C ,v � CA − B ( v ) � 2 , 1 + ρ corr ( C ) + ρ part ( v ) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 26/52

  35. Partial functional maps min C ,v � CA − B ( v ) � 2 , 1 + ρ corr ( C ) + ρ part ( v ) Part regularization Area preservation � M v ( m ) dx ≈ |N| Spatial regularity = small boundary length (Mumford-Shah) a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein 2 2008 Rodol` 26/52

  36. Partial functional maps min C ,v � CA − B ( v ) � 2 , 1 + ρ corr ( C ) + ρ part ( v ) Part regularization Area preservation � M v ( m ) dx ≈ |N| Spatial regularity = small boundary length (Mumford-Shah) Correspondence regularization Slanted diagonal structure Approximate ortho-projection ( C ⊤ C ) i � = j ≈ 0 rank( C ) ≈ r a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein 2 2008 Rodol` 26/52

  37. Alternating minimization C -step: fix v ∗ , solve for correspondence C C � CA − B ( v ∗ ) � 2 , 1 + ρ corr ( C ) min v -step: fix C ∗ , solve for part v � C ∗ A − B ( v ) � 2 , 1 + ρ part ( v ) min v Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 27/52

  38. Alternating minimization C -step: fix v ∗ , solve for correspondence C C � CA − B ( v ∗ ) � 2 , 1 + ρ corr ( C ) min v -step: fix C ∗ , solve for part v � C ∗ A − B ( v ) � 2 , 1 + ρ part ( v ) min v Iteration 1 2 3 4 Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 27/52

  39. Example of convergence Time (sec.) 0 5 10 15 20 25 10 10 C -step 10 9 v -step 10 8 Energy 10 7 10 6 10 5 10 4 0 20 40 60 80 100 Iteration Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 28/52

  40. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 29/52

  41. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 29/52

  42. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 29/52

  43. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 29/52

  44. Partial functional maps vs Functional maps 100 150 100 80 50 % Correspondences PFM 60 Func. maps 40 50 100 20 150 0 0 0.05 0.1 0.15 0.2 0.25 Geodesic error Correspondence performance for different basis size k Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 30/52

  45. Partial correspondence performance Cuts Holes 100 % Correspondences 80 60 40 20 0 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 Geodesic Error Geodesic Error PFM RF IM EN GT SHREC’16 Partial Matching benchmark Rodol` a et al. 2016; Methods: Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 ( PFM ); Sahillio˘ glu, Yemez 2012 (IM); Rodol` a, Bronstein, Albarelli, Bergamasco, Torsello 2012 (GT); Rodol` a et al. 2013 (EN); Rodol` a et al. 2014 (RF) 31/52

  46. Partial correspondence performance Cuts Holes 1 Mean geodesic error 0 . 8 0 . 6 0 . 4 0 . 2 0 20 40 60 80 20 40 60 80 Partiality (%) Partiality (%) PFM RF IM EN GT SHREC’16 Partial Matching benchmark Rodol` a et al. 2016; Methods: Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 ( PFM ); Sahillio˘ glu, Yemez 2012 (IM); Rodol` a, Bronstein, Albarelli, Bergamasco, Torsello 2012 (GT); Rodol` a et al. 2013 (EN); Rodol` a et al. 2014 (RF) 32/52

  47. Partial correspondence (part-to-full) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 33/52

  48. Partial correspondence (part-to-part) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 33/52

  49. Key observation M N N M C N N C M M slant ∝ | N | slant ∝ | M | |N| |M| a, Bronstein 2 , Cremers 2016 Litany, Rodol` 34/52

  50. Key observation M N N M C NM = C M M C N M C N N slant ∝ | N | |M| |N| | M | a, Bronstein 2 , Cremers 2016 Litany, Rodol` 34/52

  51. Key observation M N N M C NM = C M M C N M C N N slant ∝ | N | |M| | M | = |M| |N| |N| a, Bronstein 2 , Cremers 2016 Litany, Rodol` 34/52

  52. Partial correspondence (part-to-part) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 35/52

  53. Non-rigid puzzle (multi-part) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 35/52

  54. Litany, Bronstein 2 2012

  55. Non-rigid puzzles problem formulation Input M 1 T F 1 Model M N 1 N c Parts N 1 , . . . , N p 2 T F 2 M 2 N c 1 N 2 Output Part N 1 Segmentation M i ⊆ M Located parts N i ⊆ N i M 0 Clutter N c i Missing parts M 0 Correspondences T F i Model M Part N 2 a, Bronstein 2 , Cremers 2016 Litany, Rodol` 37/52

  56. Non-rigid puzzles problem formulation Input u 1 C 1 Model M v 1 Parts N 1 , . . . , N p C 2 u 2 v 2 Output Part N 1 Segmentation u i : M→ [0 , 1] Located parts v i : N i → [0 , 1] u 0 Clutter 1 − v i Missing parts u 0 Correspondences C i Model M Part N 2 a, Bronstein 2 , Cremers 2016 Litany, Rodol` 37/52

  57. Non-rigid puzzles problem formulation p p p � � � min � C i A i ( v i ) − B ( u i ) � 2 , 1 + ρ part ( u i , v i ) + ρ corr ( C i ) C i ,u i ,v i i =1 i =0 i =1 p � s.t. u i = 1 i =0 a, Bronstein 2 , Cremers 2016 Litany, Rodol` 38/52

  58. Convergence example Outer iteration 1 a, Bronstein 2 , Cremers 2016 Litany, Rodol` 39/52

  59. Convergence example Outer iteration 2 a, Bronstein 2 , Cremers 2016 Litany, Rodol` 39/52

  60. Convergence example Outer iteration 3 a, Bronstein 2 , Cremers 2016 Litany, Rodol` 39/52

  61. Convergence example Time (sec) 30 32 34 36 38 40 42 44 46 48 80 90 100 110 120 130 140 150 160 Iteration number a, Bronstein 2 , Cremers 2016 Litany, Rodol` 40/52

  62. Example: “Perfect puzzle” Model/Part Synthetic (TOSCA) Transformation Isometric Clutter No Missing part No Data term Dense (SHOT) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 41/52

  63. Example: “Perfect puzzle” Model/Part Synthetic (TOSCA) Transformation Isometric Clutter No Missing part No Data term Dense (SHOT) Segmentation a, Bronstein 2 , Cremers 2016 Litany, Rodol` 41/52

  64. Example: “Perfect puzzle” Model/Part Synthetic (TOSCA) Transformation Isometric Clutter No Missing part No Data term Dense (SHOT) Correspondence a, Bronstein 2 , Cremers 2016 Litany, Rodol` 41/52

  65. Example: Overlapping parts Model/Part Synthetic (FAUST) Transformation Near-isometric Clutter Yes (overlap) Missing part No Data term Dense (SHOT) Segmentation a, Bronstein 2 , Cremers 2016 Litany, Rodol` 42/52

  66. Example: Overlapping parts Model/Part Synthetic (FAUST) Transformation Near-isometric Clutter Yes (overlap) Missing part No Data term Dense (SHOT) Correspondence a, Bronstein 2 , Cremers 2016 Litany, Rodol` 42/52

  67. Example: Missing parts Model/Part Synthetic (TOSCA) Transformation Isometric Clutter Yes (extra part) Missing part Yes Data term Dense (SHOT) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 43/52

  68. Example: Missing parts Model/Part Synthetic (TOSCA) Transformation Isometric Clutter Yes (extra part) Missing part Yes Data term Dense (SHOT) Segmentation a, Bronstein 2 , Cremers 2016 Litany, Rodol` 43/52

  69. Example: Missing parts Model/Part Synthetic (TOSCA) Transformation Isometric Clutter Yes (extra part) Missing part Yes Data term Dense (SHOT) Correspondence a, Bronstein 2 , Cremers 2016 Litany, Rodol` 43/52

  70. Partial functional correspondence with spatial part model M φ M φ M φ M φ M φ M φ M 1 2 3 4 5 6 T F N N φ N φ N φ N φ N φ N φ N 1 2 3 4 5 6 π j ≈ j |N | � T F φ M i , v · φ N Slanted diagonal: j � L 2 ( N ) ≈ ± δ i,π j |M| Complicated alternating optimization w.r.t. v and C Explicit spatial model v of the part ⇒ O ( n ) complexity! a, Bronstein 2 2016 Litany, Rodol` 44/52

  71. Spectral partial functional correspondence M φ M φ M φ M φ M φ M φ M 1 2 3 4 5 6 T F N φ N ˆ φ N ˆ φ N ˆ φ N ˆ φ N ˆ φ N ˆ 1 2 3 4 5 6 Find a new basis { ˆ i , ˆ φ N i } k � T F φ M φ N i =1 such that j � L 2 ( N ) ≈ δ ij a, Bronstein 2 2016 Litany, Rodol` 45/52

  72. Spectral partial functional correspondence M φ M φ M φ M φ M φ M φ M 1 2 3 4 5 6 T F N φ N ˆ φ N ˆ φ N ˆ φ N ˆ φ N ˆ φ N ˆ 1 2 3 4 5 6 Find a new basis { ˆ i , � k φ N i } k � T F φ M l =1 q lj φ N i =1 such that l � L 2 ( N ) ≈ δ ij New basis functions { ˆ φ N i } k i =1 are localized on N Optimization over coefficients Q = ( q ij ) ⇒ O ( k 2 ) complexity! a, Bronstein 2 2016 Litany, Rodol` 45/52

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend