computing and processing correspondences with functional
play

Computing and Processing Correspondences with Functional Maps Maks - PowerPoint PPT Presentation

Computing and Processing Correspondences with Functional Maps Maks Ovsjanikov 1 Etienne Corman 1 Michael Bronstein 2 , 3 , 4 a 2 Mirela Ben-Chen 5 Leonidas Guibas 6 Emanuele Rodol` eric Chazal 7 Alexander Bronstein 5 , 2 , 3 Fr ed 1 Ecole


  1. Joint diagonalization problem o ff ( P > Λ M ,k 0 P ) + o ff ( Q > Λ N ,k 0 Q ) + µ k P > A � Q > B k 2 , 1 min P , Q P > P = I Q > Q = I s . t . O ff -diagonal elements penalty o ff ( X ) = P i 6 = j x 2 ij Dirichlet energy o ff ( X ) = trace( X ) for k 0 > k If Frobenius norm is used and k 0 = k , due to rotation invariance C = QP > is the functional correspondence matrix Robust norm k X k 2 , 1 = P j k x j k 2 allows coping with outliers Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013 7/66

  2. Example of joint diagonalization Isometric Elements of P > Λ M ,k 0 P and Q > Λ N ,k 0 Q Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013 8/66

  3. Example of joint diagonalization Isometric Non-isometric Elements of P > Λ M ,k 0 P and Q > Λ N ,k 0 Q Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013 8/66

  4. Example of joint diagonalization Mesh with 8.5K vertices Mesh with 850 vertices Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013 9/66

  5. Example of joint diagonalization Mesh with 8.5K vertices Point cloud with 850 vertices Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013 10/66

  6. Choice of the basis Functional correspondence matrix C expressed in standard Laplacian eigenbases Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013 11/66

  7. Choice of the basis Functional correspondence matrix C expressed in coupled approximate eigenbases Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013 11/66

  8. Multiple shapes C ij A i ⇡ A j M j M p M i M 1 M 2 Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013; Kovnatsky, Glasho ff , Bronstein 2016 12/66

  9. Multiple shapes P > i A i ⇡ P > j A j M j M p M i M 1 M 2 Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013; Kovnatsky, Glasho ff , Bronstein 2016 12/66

  10. Multiple shapes P > i A i ⇡ P > j A j P j M j P i P p M p M i P 1 P 2 M 1 M 2 Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013; Kovnatsky, Glasho ff , Bronstein 2016 12/66

  11. Multiple shapes p X X trace( P > k P > i A i � P > min i Λ M i P i ) + µ j A j k P 1 ,..., P p i =1 i 6 = j P > s . t . i P i = I ‘Synchronization problem’ Matrices P 1 , . . . , P p orthogonally align the p eigenbases Kovnatsky, Bronstein 2 , Glasho ff , Kimmel 2013; Kovnatsky, Glasho ff , Bronstein 2016 13/66

  12. Computing Functional Maps with Manifold Optimization 14/66

  13. trace( P > Λ P ) + µ k PA � B k P > P = I min s . t . P 15/66

  14. trace( P > Λ P ) + µ k PA � B k P > P = I min s . t . P Optimization on the Stiefel manifold of orthogonal matrices 15/66

  15. Manifold optimization toy example: eigenvalue problem x 2 R 3 x > Ax x > x = 1 min s . t . Minimization of a quadratic function on the sphere 16/66

  16. Manifold optimization toy example: eigenvalue problem x 2 S (3 , 1) x > Ax min Minimization of a quadratic function on the sphere 16/66

  17. Optimization on the manifold: main idea X ( k ) X ( k +1) S Absil et al. 2009 17/66

  18. Optimization on the manifold: main idea r f ( X ( k ) ) X ( k ) P X ( k ) r S f ( X ( k ) ) T X ( k ) S S Absil et al. 2009 17/66

  19. Optimization on the manifold: main idea r f ( X ( k ) ) X ( k ) P X ( k ) α ( k ) r S f ( X ( k ) ) T X ( k ) S S Absil et al. 2009 17/66

  20. Optimization on the manifold: main idea r f ( X ( k ) ) X ( k ) P X ( k ) α ( k ) r S f ( X ( k ) ) T X ( k ) S R X ( k ) X ( k +1) S Absil et al. 2009 17/66

  21. Optimization on the manifold repeat Compute extrinsic gradient r f ( X ( k ) ) Projection: r S f ( X ( k ) ) = P X ( k ) ( r f ( X ( k ) )) Compute step size α ( k ) along the descent direction �r S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( � α ( k ) r S f ( X ( k ) )) k k + 1 until convergence ; Absil et al. 2009; Boumal et al. 2014 18/66

  22. Optimization on the manifold repeat Compute extrinsic gradient r f ( X ( k ) ) Projection: r S f ( X ( k ) ) = P X ( k ) ( r f ( X ( k ) )) Compute step size α ( k ) along the descent direction �r S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( � α ( k ) r S f ( X ( k ) )) k k + 1 until convergence ; Projection P and retraction R operators are manifold-dependent Absil et al. 2009; Boumal et al. 2014 18/66

  23. Optimization on the manifold repeat Compute extrinsic gradient r f ( X ( k ) ) Projection: r S f ( X ( k ) ) = P X ( k ) ( r f ( X ( k ) )) Compute step size α ( k ) along the descent direction �r S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( � α ( k ) r S f ( X ( k ) )) k k + 1 until convergence ; Projection P and retraction R operators are manifold-dependent Typically expressed in closed form Absil et al. 2009; Boumal et al. 2014 18/66

  24. Optimization on the manifold repeat Compute extrinsic gradient r f ( X ( k ) ) Projection: r S f ( X ( k ) ) = P X ( k ) ( r f ( X ( k ) )) Compute step size α ( k ) along the descent direction �r S f ( X ( k ) ) Retraction: X ( k +1) = R X ( k ) ( � α ( k ) r S f ( X ( k ) )) k k + 1 until convergence ; Projection P and retraction R operators are manifold-dependent Typically expressed in closed form “Black box”: need to provide only f ( X ) and gradient r f ( X ) Absil et al. 2009; Boumal et al. 2014 18/66

  25. trace( P > Λ P ) + µ k PA � B k 2 P > P = I min s . t . 2 P Optimization on the Stiefel manifold 19/66

  26. trace( P > Λ P ) P > P = I min + µ k PA � B k 2 , 1 s . t . P | {z } | {z } smooth non-smooth Non-smooth optimization on the Stiefel manifold 19/66

  27. Manifold ADMM (MADMM) min f ( X ) + g ( X ) X 2 S ( n,k ) | {z } | {z } smooth non-smooth Hestenes 1969; Powell 1969; Kovnatsky, Glasho ff , Bronstein 2016 20/66

  28. Manifold ADMM (MADMM) min f ( X ) + g ( Z ) s . t . Z = X X 2 S ( n,k ) | {z } |{z} smooth non-smooth Z 2 R n ⇥ k Hestenes 1969; Powell 1969; Kovnatsky, Glasho ff , Bronstein 2016 20/66

  29. Manifold ADMM (MADMM) min f ( X ) + g ( Z ) s . t . Z = X X 2 S ( n,k ) | {z } |{z} smooth non-smooth Z 2 R n ⇥ k Apply the method of multipliers only to the constraint Z = X 2 k X � Z + U k 2 min f ( X ) + g ( Z ) + ρ F X 2 S ( n,k ) Z 2 R n ⇥ k Solve alternating w.r.t. X and Z and updating U U + X � Z Hestenes 1969; Powell 1969; Kovnatsky, Glasho ff , Bronstein 2016 20/66

  30. Manifold ADMM (MADMM) min f ( X ) + g ( Z ) s . t . Z = X X 2 S ( n,k ) | {z } |{z} smooth non-smooth Z 2 R n ⇥ k Apply the method of multipliers only to the constraint Z = X 2 k X � Z + U k 2 min f ( X ) + g ( Z ) + ρ F X 2 S ( n,k ) Z 2 R n ⇥ k Solve alternating w.r.t. X and Z and updating U U + X � Z Problem breaks into Smooth manifold optimization sub-problem w.r.t. X , and Non-smooth unconstrained sub-problem w.r.t. Z Hestenes 1969; Powell 1969; Kovnatsky, Glasho ff , Bronstein 2016 20/66

  31. Manifold ADMM (MADMM) Initialize k 1 , Z (1) = X (1) , U (1) = 0 . repeat X -step: X ( k +1) = argmin 2 k X � Z ( k ) + U ( k ) k 2 f ( X ) + ρ F X 2 S Z -step: Z ( k +1) = argmin 2 k X ( k +1) � Z + U ( k ) k 2 g ( Z ) + ρ F Z Update U ( k +1) = U ( k ) + X ( k +1) � Z ( k +1) k k + 1 until convergence ; Kovnatsky, Glasho ff , Bronstein 2016 21/66

  32. Manifold ADMM (MADMM) Initialize k 1 , Z (1) = X (1) , U (1) = 0 . repeat X -step: X ( k +1) = argmin 2 k X � Z ( k ) + U ( k ) k 2 f ( X ) + ρ F X 2 S Z -step: Z ( k +1) = argmin 2 k X ( k +1) � Z + U ( k ) k 2 g ( Z ) + ρ F Z Update U ( k +1) = U ( k ) + X ( k +1) � Z ( k +1) k k + 1 until convergence ; Solver/number of optimization iterations in X - and Z -steps Kovnatsky, Glasho ff , Bronstein 2016 21/66

  33. Manifold ADMM (MADMM) Initialize k 1 , Z (1) = X (1) , U (1) = 0 . repeat X -step: X ( k +1) = argmin 2 k X � Z ( k ) + U ( k ) k 2 f ( X ) + ρ F X 2 S Z -step: Z ( k +1) = argmin 2 k X ( k +1) � Z + U ( k ) k 2 g ( Z ) + ρ F Z Update U ( k +1) = U ( k ) + X ( k +1) � Z ( k +1) k k + 1 until convergence ; Solver/number of optimization iterations in X - and Z -steps X -step and X -step in some problems have a closed form Kovnatsky, Glasho ff , Bronstein 2016 21/66

  34. Manifold ADMM (MADMM) Initialize k 1 , Z (1) = X (1) , U (1) = 0 . repeat X -step: X ( k +1) = argmin 2 k X � Z ( k ) + U ( k ) k 2 f ( X ) + ρ F X 2 S Z -step: Z ( k +1) = argmin 2 k X ( k +1) � Z + U ( k ) k 2 g ( Z ) + ρ F Z Update U ( k +1) = U ( k ) + X ( k +1) � Z ( k +1) k k + 1 until convergence ; Solver/number of optimization iterations in X - and Z -steps X -step and X -step in some problems have a closed form Parameter ρ > 0 can be chosen fixed or adapted Kovnatsky, Glasho ff , Bronstein 2016 21/66

  35. L 2 vs L 2 , 1 data term Least squares Robust (MADMM) Correspondence computed with data containing 10% outliers Kovnatsky, Glasho ff , Bronstein 2016 22/66

  36. Partial Functional Maps 23/66

  37. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 24/66

  38. Partial Laplacian eigenvectors Functional correspondence matrix C Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 25/66

  39. Perturbation analysis: intuition ¯ ¯ ¯ ∆ ¯ φ 1 φ 2 φ 3 M ∆ M φ 1 φ 2 φ 3 ¯ ¯ ¯ λ 1 λ 2 λ 3 M λ 1 λ 2 λ 3 ¯ M φ 1 φ 2 φ 3 ∆ M ¯ ¯ ¯ ∆ ¯ φ 1 φ 2 φ 3 M ¯ ¯ ¯ λ 1  λ 1  λ 2  λ 3  λ 2  λ 3 Ignoring boundary interaction: disjoint parts (block-diagonal matrix) Eigenvectors = Mixture of eigenvectors of the parts Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 26/66

  40. Perturbation analysis: eigenvalues 8 . 00 · 10 � 2 M 6 . 00 4 . 00 r k N 2 . 00 0 . 00 10 20 30 40 50 eigenvalue number k ≈ |M| Slope r |N | (depends on the area of the cut) Consistent with Weyl’s law Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 27/66

  41. Perturbation analysis: details ∆ M M t E ¯ ∆ M + t D M M t E > ∆ ¯ M + t D ¯ M ∆ ¯ M Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 28/66

  42. Perturbation analysis: boundary interaction strength 20 10 Value of f Eigenvector perturbation depends on length and position of the boundary R Perturbation strength ≤ c ∂ M f ( m ) dm , where n ✓ φ i ( m ) φ j ( m ) ◆ 2 X f ( m ) = λ i � λ j i,j =1 j 6 = i Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 29/66

  43. Partial functional maps Model shape M Query shape N T F Part M ✓ M ⇡ isometric to N Part Data f 1 , . . . , f q 2 L 2 ( N ) M Query N g 1 , . . . , g q 2 L 2 ( M ) Partial functional map ( T F f i )( m ) ⇡ g i ( m ) , m 2 M Model M Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 30/66

  44. Partial functional maps Model shape M Query shape N T F Part M ✓ M ⇡ isometric to N Part Data f 1 , . . . , f q 2 L 2 ( N ) v Query N g 1 , . . . , g q 2 L 2 ( M ) Partial functional map T F f i ⇡ g i · v, v : M ! [0 , 1] Model M Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 30/66

  45. Partial functional maps Model shape M Query shape N C Part M ✓ M ⇡ isometric to N Part Data f 1 , . . . , f q 2 L 2 ( N ) v Query N g 1 , . . . , g q 2 L 2 ( M ) Partial functional map ⇡ B ( v ) , v : M ! [0 , 1] CA � � h φ N A = i , f j i L 2 ( N ) � � h φ M Model M B ( v ) = i , g j · v i L 2 ( M ) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 30/66

  46. Partial functional maps Model shape M Query shape N C Part M ✓ M ⇡ isometric to N Part Data f 1 , . . . , f q 2 L 2 ( N ) v Query N g 1 , . . . , g q 2 L 2 ( M ) Partial functional map ⇡ B ( v ) , v : M ! [0 , 1] CA � � h φ N A = i , f j i L 2 ( N ) � � h φ M Model M B ( v ) = i , g j · v i L 2 ( M ) Optimization problem w.r.t. correspondence C and part v min C ,v k CA � B ( v ) k 2 , 1 + ρ corr ( C ) + ρ part ( v ) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 30/66

  47. Partial functional maps min C ,v k CA � B ( v ) k 2 , 1 + ρ corr ( C ) + ρ part ( v ) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 31/66

  48. Partial functional maps min C ,v k CA � B ( v ) k 2 , 1 + ρ corr ( C ) + ρ part ( v ) Part regularization Area preservation R M v ( m ) dx ≈ |N| Spatial regularity = small boundary length (Mumford-Shah) a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein 2 2008 Rodol` 31/66

  49. Partial functional maps min C ,v k CA � B ( v ) k 2 , 1 + ρ corr ( C ) + ρ part ( v ) Part regularization Area preservation R M v ( m ) dx ≈ |N| Spatial regularity = small boundary length (Mumford-Shah) Correspondence regularization Slanted diagonal structure Approximate ortho-projection ( C > C ) i 6 = j ≈ 0 rank( C ) ≈ r a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein 2 2008 Rodol` 31/66

  50. Structure of partial functional correspondence 4 2 0 0 20 40 60 80 100 C > C C W singular values Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 32/66

  51. Alternating minimization C -step: fix v ⇤ , solve for correspondence C C k CA � B ( v ⇤ ) k 2 , 1 + ρ corr ( C ) min v -step: fix C ⇤ , solve for part v k C ⇤ A � B ( v ) k 2 , 1 + ρ part ( v ) min v Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 33/66

  52. Alternating minimization C -step: fix v ⇤ , solve for correspondence C C k CA � B ( v ⇤ ) k 2 , 1 + ρ corr ( C ) min v -step: fix C ⇤ , solve for part v k C ⇤ A � B ( v ) k 2 , 1 + ρ part ( v ) min v Iteration 1 2 3 4 Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 33/66

  53. Example of convergence Time (sec.) 0 5 10 15 20 25 10 10 C -step 10 9 v -step 10 8 Energy 10 7 10 6 10 5 10 4 0 20 40 60 80 100 Iteration Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 34/66

  54. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 35/66

  55. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 35/66

  56. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 35/66

  57. Examples of partial functional maps Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 35/66

  58. Partial functional maps vs Functional maps 100 150 100 80 50 % Correspondences PFM 60 Func. maps 40 50 100 20 150 0 0 0.05 0.1 0.15 0.2 0.25 Geodesic error Correspondence performance for di ff erent basis size k Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 36/66

  59. Partial correspondence performance Cuts Holes 100 % Correspondences 80 60 40 20 0 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 Geodesic Error Geodesic Error PFM RF IM EN GT SHREC’16 Partial Matching benchmark Rodol` a et al. 2016; Methods: Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 ( PFM ); Sahillio˘ glu, Yemez 2012 (IM); Rodol` a, Bronstein, Albarelli, Bergamasco, Torsello 2012 (GT); Rodol` a et al. 2013 (EN); Rodol` a et al. 2014 (RF) 37/66

  60. Partial correspondence performance Cuts Holes 1 Mean geodesic error 0 . 8 0 . 6 0 . 4 0 . 2 0 20 40 60 80 20 40 60 80 Partiality (%) Partiality (%) PFM RF IM EN GT SHREC’16 Partial Matching benchmark Rodol` a et al. 2016; Methods: Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 ( PFM ); Sahillio˘ glu, Yemez 2012 (IM); Rodol` a, Bronstein, Albarelli, Bergamasco, Torsello 2012 (GT); Rodol` a et al. 2013 (EN); Rodol` a et al. 2014 (RF) 38/66

  61. Geometric deep learning + Partial functional maps Correspondence 10% 0 Correspondence error Boscaini, Masci, Rodol` a, Bronstein 2016 39/66

  62. Geometric deep learning + Partial functional maps Correspondence 10% 0 Correspondence error Boscaini, Masci, Rodol` a, Bronstein 2016 40/66

  63. Geometric deep learning + Partial functional maps 7.5% 0 Pointwise geodesic error (in % of geodesic diameter) Monti, Boscaini, Masci, Rodol` a, Svoboda, Bronstein 2016 41/66

  64. Geometric deep learning + Partial functional maps Reference Correspondence visualization (similar colors encode corresponding points) Training: FAUST / Testing: FAUST Monti, Boscaini, Masci, Rodol` a, Svoboda, Bronstein 2016 42/66

  65. Geometric deep learning + Partial functional maps Reference Correspondence visualization (similar colors encode corresponding points) Training: FAUST / Testing: SCAPE+TOSCA Monti, Boscaini, Masci, Rodol` a, Svoboda, Bronstein 2016 42/66

  66. Partial correspondence (part-to-full) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 43/66

  67. Partial correspondence (part-to-part) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 43/66

  68. Key observation M N N M C N N C M M slant / | N | slant / | M | |N| |M| a, Bronstein 2 , Cremers 2016 Litany, Rodol` 44/66

  69. Key observation M N N M C NM = C M M C N M C N N slant / | N | |M| |N| | M | a, Bronstein 2 , Cremers 2016 Litany, Rodol` 44/66

  70. Key observation M N N M C NM = C M M C N M C N N slant / | N | |M| | M | = |M| |N| |N| a, Bronstein 2 , Cremers 2016 Litany, Rodol` 44/66

  71. Partial correspondence (part-to-part) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 45/66

  72. Non-rigid puzzle (multi-part) a, Bronstein 2 , Cremers 2016 Litany, Rodol` 45/66

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend