identification of parallel wiener
play

Identification of parallel Wiener- Hammerstein systems with a - PowerPoint PPT Presentation

Identification of parallel Wiener- Hammerstein systems with a decoupled static nonlinearity M. Schoukens, K. Tiels, M. Ishteva, J. Schoukens 1 Parallel Wiener-Hammerstein Flexible Simple LTI SNL LTI 2 Identifiability Full rank linear


  1. Identification of parallel Wiener- Hammerstein systems with a decoupled static nonlinearity M. Schoukens, K. Tiels, M. Ishteva, J. Schoukens 1

  2. Parallel Wiener-Hammerstein Flexible Simple LTI SNL LTI 2

  3. Identifiability Full rank linear transform 3

  4. Identifiability Full rank linear transform  coupled nonlinearity 4

  5. Best Linear Approximation Input signals 5

  6. Best Linear Approximation Input signals Combination of dynamics! 6

  7. Best Linear Approximation Input signals Combination of Fixed poles dynamics! Moving zeros 7

  8. Best Linear Approximation Common denominator – Fixed poles – Moving zeros 8

  9. Decomposing the dynamics numerator coefficients D U  V 9

  10. Partition the dynamics 10

  11. Partition the dynamics 11

  12. Partition the dynamics 12

  13. Partition the dynamics 13

  14. Decoupling 14

  15. Decoupling a Static Nonlinearity 15

  16. Decoupling a Static Nonlinearity Homogeneous 2 nd degree  Decoupling = matrix diagonalization 16

  17. Decoupling a Static Nonlinearity Homogeneous 3 rd degree 17

  18. Decoupling a Static Nonlinearity Homogeneous 3 rd degree  Decoupling = tensor diagonalization 18

  19. Decoupling a Static Nonlinearity Polynomial of degree n – Combine Homogeneous Tensors of different degrees – Add constant input  Decoupling = tensor diagonalization 19

  20. Measurement Example Multisine input: System: 5 amplitudes Custom built circuit 12 th order dynamics 20 realizations 2 periods Diode-resistor NL 16384 samples 20

  21. Measurement Example Validation Error (mV) rms(e) Coupled, 3 rd Degree 11.92 Decoupled, 3 rd Degree 31.05 Decoupled, 15 th Degree 0.66 21

  22. Measurement Example 22

  23. Measurement Example 23

  24. Conclusion • Different LTI models  parallel Wiener-Hammerstein model • Tensor Diagonalization  Decoupling polynomial • Low complexity • High flexibility • Good performance It works! 24

  25. Identification of parallel Wiener- Hammerstein systems with a decoupled static nonlinearity M. Schoukens, K. Tiels, M. Ishteva, J. Schoukens 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend