wiener chaos approach for optimal
play

Wiener chaos approach for optimal Introduction Wiener Chaos - PowerPoint PPT Presentation

Optimal Prediction D.Alpay and A. Kipnis Wiener chaos approach for optimal Introduction Wiener Chaos prediction Trigonometric Isomorphism Approach to Kolmogorov-Wiener Prediction Problem Main Results Daniel Alpay 1 Alon Kipnis 1


  1. Optimal Prediction D.Alpay and A. Kipnis Wiener chaos approach for optimal Introduction Wiener Chaos prediction Trigonometric Isomorphism Approach to Kolmogorov-Wiener Prediction Problem Main Results Daniel Alpay 1 Alon Kipnis 1 Applications Prediction of Gaussian Processes Stochastic PDE 1 Department of Mathematics A Note on the Wick Product Ben-Gurion University of the Negev Summary May 2012

  2. Outline Optimal Prediction Introduction 1 D.Alpay and A. Kipnis Wiener Chaos Introduction Trigonometric Isomorphism Approach to Wiener Chaos Kolmogorov-Wiener Prediction Problem Trigonometric Isomorphism Approach to Kolmogorov-Wiener Prediction Problem Main Results 2 Main Results Applications Applications 3 Prediction of Gaussian Processes Prediction of Gaussian Processes Stochastic PDE A Note on the Wick Product Stochastic PDE Summary A Note on the Wick Product Summary 4

  3. Outline Optimal Prediction Introduction 1 D.Alpay and A. Kipnis Wiener Chaos Introduction Trigonometric Isomorphism Approach to Wiener Chaos Kolmogorov-Wiener Prediction Problem Trigonometric Isomorphism Approach to Kolmogorov-Wiener Prediction Problem Main Results 2 Main Results Applications Applications 3 Prediction of Gaussian Processes Prediction of Gaussian Processes Stochastic PDE A Note on the Wick Product Stochastic PDE Summary A Note on the Wick Product Summary 4

  4. Outline Optimal Prediction Introduction 1 D.Alpay and A. Kipnis Wiener Chaos Introduction Trigonometric Isomorphism Approach to Wiener Chaos Kolmogorov-Wiener Prediction Problem Trigonometric Isomorphism Approach to Kolmogorov-Wiener Prediction Problem Main Results 2 Main Results Applications Applications 3 Prediction of Gaussian Processes Prediction of Gaussian Processes Stochastic PDE A Note on the Wick Product Stochastic PDE Summary A Note on the Wick Product Summary 4

  5. Chaos Decomposition Optimal Prediction Let H be a Gaussian Hilbert space, (each h ∈ H is a D.Alpay and zero mean Gaussian random variable on the probability A. Kipnis space (Ω , F , P ) Introduction Denote by H ⋄ n the symmetric tensor power of H , then Wiener Chaos Trigonometric Isomorphism Approach to Kolmogorov-Wiener ∞ � Prediction Problem H ⋄ n = L 2 (Ω , F ( H ) , P ) Γ( H ) � Main Results Applications n = 0 Prediction of Gaussian Processes Γ( H ) is the symmetric Fock space over H Stochastic PDE A Note on the Wick Product Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition Summary ∞ � X n ( ω ) ∈ H ⋄ n X ( ω ) = X n ( ω ) , n = 0

  6. Chaos Decomposition Optimal Prediction Let H be a Gaussian Hilbert space, (each h ∈ H is a D.Alpay and zero mean Gaussian random variable on the probability A. Kipnis space (Ω , F , P ) Introduction Denote by H ⋄ n the symmetric tensor power of H , then Wiener Chaos Trigonometric Isomorphism Approach to Kolmogorov-Wiener ∞ � Prediction Problem H ⋄ n = L 2 (Ω , F ( H ) , P ) Γ( H ) � Main Results Applications n = 0 Prediction of Gaussian Processes Γ( H ) is the symmetric Fock space over H Stochastic PDE A Note on the Wick Product Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition Summary ∞ � X n ( ω ) ∈ H ⋄ n X ( ω ) = X n ( ω ) , n = 0

  7. Chaos Decomposition Optimal Prediction Let H be a Gaussian Hilbert space, (each h ∈ H is a D.Alpay and zero mean Gaussian random variable on the probability A. Kipnis space (Ω , F , P ) Introduction Denote by H ⋄ n the symmetric tensor power of H , then Wiener Chaos Trigonometric Isomorphism Approach to Kolmogorov-Wiener ∞ � Prediction Problem H ⋄ n = L 2 (Ω , F ( H ) , P ) Γ( H ) � Main Results Applications n = 0 Prediction of Gaussian Processes Γ( H ) is the symmetric Fock space over H Stochastic PDE A Note on the Wick Product Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition Summary ∞ � X n ( ω ) ∈ H ⋄ n X ( ω ) = X n ( ω ) , n = 0

  8. Wiener-Hermite Chaos Optimal Prediction For an orthogonal basis { η n , n ∈ N } for H define D.Alpay and ∞ � A. Kipnis H α ( ω ) � h α n ( η n ) , α ∈ J Introduction n = 0 Wiener Chaos Trigonometric where α is a multi index α = ( α 0 , α 1 , ..., α r , 0 , ... ) and Isomorphism Approach to { h n ( x ) , n ∈ N } are the Hermite polynomials Kolmogorov-Wiener Prediction Problem { H α , α ∈ J } is an orthonormal basis for L 2 (Ω , F ( H ) , P ) Main Results The subset Applications Prediction of { H α ( ω ) , | α | = n } Gaussian Processes where | α | � � ∞ Stochastic PDE n = 0 α n is an orthonormal basis for H ⋄ n A Note on the Wick Product Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition Summary ∞ � � � X ( ω ) = f α H α ( ω ) = f α H α ( ω ) n = 0 | α | = n α ∈ J

  9. Wiener-Hermite Chaos Optimal Prediction For an orthogonal basis { η n , n ∈ N } for H define D.Alpay and ∞ � A. Kipnis H α ( ω ) � h α n ( η n ) , α ∈ J Introduction n = 0 Wiener Chaos Trigonometric where α is a multi index α = ( α 0 , α 1 , ..., α r , 0 , ... ) and Isomorphism Approach to { h n ( x ) , n ∈ N } are the Hermite polynomials Kolmogorov-Wiener Prediction Problem { H α , α ∈ J } is an orthonormal basis for L 2 (Ω , F ( H ) , P ) Main Results The subset Applications Prediction of { H α ( ω ) , | α | = n } Gaussian Processes where | α | � � ∞ Stochastic PDE n = 0 α n is an orthonormal basis for H ⋄ n A Note on the Wick Product Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition Summary ∞ � � � X ( ω ) = f α H α ( ω ) = f α H α ( ω ) n = 0 | α | = n α ∈ J

  10. Wiener-Hermite Chaos Optimal Prediction For an orthogonal basis { η n , n ∈ N } for H define D.Alpay and ∞ � A. Kipnis H α ( ω ) � h α n ( η n ) , α ∈ J Introduction n = 0 Wiener Chaos Trigonometric where α is a multi index α = ( α 0 , α 1 , ..., α r , 0 , ... ) and Isomorphism Approach to { h n ( x ) , n ∈ N } are the Hermite polynomials Kolmogorov-Wiener Prediction Problem { H α , α ∈ J } is an orthonormal basis for L 2 (Ω , F ( H ) , P ) Main Results The subset Applications Prediction of { H α ( ω ) , | α | = n } Gaussian Processes where | α | � � ∞ Stochastic PDE n = 0 α n is an orthonormal basis for H ⋄ n A Note on the Wick Product Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition Summary ∞ � � � X ( ω ) = f α H α ( ω ) = f α H α ( ω ) n = 0 | α | = n α ∈ J

  11. Wiener-Hermite Chaos Optimal Prediction For an orthogonal basis { η n , n ∈ N } for H define D.Alpay and ∞ � A. Kipnis H α ( ω ) � h α n ( η n ) , α ∈ J Introduction n = 0 Wiener Chaos Trigonometric where α is a multi index α = ( α 0 , α 1 , ..., α r , 0 , ... ) and Isomorphism Approach to { h n ( x ) , n ∈ N } are the Hermite polynomials Kolmogorov-Wiener Prediction Problem { H α , α ∈ J } is an orthonormal basis for L 2 (Ω , F ( H ) , P ) Main Results The subset Applications Prediction of { H α ( ω ) , | α | = n } Gaussian Processes where | α | � � ∞ Stochastic PDE n = 0 α n is an orthonormal basis for H ⋄ n A Note on the Wick Product Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition Summary ∞ � � � X ( ω ) = f α H α ( ω ) = f α H α ( ω ) n = 0 | α | = n α ∈ J

  12. Wiener chaos in terms of multiple Itˆ o integrals Optimal Prediction �� � Let H = sp g ( t ) dB ( t ) , g ∈ L 2 ( R ) , where { B ( t ) } is a D.Alpay and A. Kipnis Brownian motion Introduction If f ( t 1 , ..., t n ) ∈ L 2 ( R ) is symmetric then Wiener Chaos Trigonometric � � ∞ � t n � t 2 Isomorphism Approach to R n f n dB ⋄ n � n ! Kolmogorov-Wiener · · · f n ( ... ) dB ( t ) · · · dB ( t n ) Prediction Problem −∞ −∞ −∞ Main Results Applications is well defined and belongs to H ⋄ n Prediction of Gaussian Processes Stochastic PDE Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition A Note on the Wick Product � Summary � ∞ R n f n dB ⋄ n X ( ω ) = n = 0

  13. Wiener chaos in terms of multiple Itˆ o integrals Optimal Prediction �� � Let H = sp g ( t ) dB ( t ) , g ∈ L 2 ( R ) , where { B ( t ) } is a D.Alpay and A. Kipnis Brownian motion Introduction If f ( t 1 , ..., t n ) ∈ L 2 ( R ) is symmetric then Wiener Chaos Trigonometric � � ∞ � t n � t 2 Isomorphism Approach to R n f n dB ⋄ n � n ! Kolmogorov-Wiener · · · f n ( ... ) dB ( t ) · · · dB ( t n ) Prediction Problem −∞ −∞ −∞ Main Results Applications is well defined and belongs to H ⋄ n Prediction of Gaussian Processes Stochastic PDE Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition A Note on the Wick Product � Summary � ∞ R n f n dB ⋄ n X ( ω ) = n = 0

  14. Wiener chaos in terms of multiple Itˆ o integrals Optimal Prediction �� � Let H = sp g ( t ) dB ( t ) , g ∈ L 2 ( R ) , where { B ( t ) } is a D.Alpay and A. Kipnis Brownian motion Introduction If f ( t 1 , ..., t n ) ∈ L 2 ( R ) is symmetric then Wiener Chaos Trigonometric � � ∞ � t n � t 2 Isomorphism Approach to R n f n dB ⋄ n � n ! Kolmogorov-Wiener · · · f n ( ... ) dB ( t ) · · · dB ( t n ) Prediction Problem −∞ −∞ −∞ Main Results Applications is well defined and belongs to H ⋄ n Prediction of Gaussian Processes Stochastic PDE Each X ∈ L 2 (Ω , F ( H ) , P ) has the decomposition A Note on the Wick Product � Summary � ∞ R n f n dB ⋄ n X ( ω ) = n = 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend