quantum chaos in many particle systems
play

Quantum chaos in many-particle systems Boris Gutkin Georgia - PowerPoint PPT Presentation

Quantum chaos in many-particle systems Boris Gutkin Georgia Institute of Technology & Duisburg-Essen University QMath13: Atlanta, October 2016 p. 1 Outline of the talk Single-particle quantum chaos. Single (semiclassical)


  1. Quantum chaos in many-particle systems Boris Gutkin Georgia Institute of Technology & Duisburg-Essen University QMath13: Atlanta, October 2016 – p. 1

  2. Outline of the talk • “Single”-particle quantum chaos. Single (semiclassical) limit: � → 0 • Many-particle quantum chaos. Double limit: N → ∞ , � → 0 B.G. & V. Al. Osipov, Nonlinearity 29 (2016) arXiv:1503.02676 – p. 2

  3. Chaos & Spectral universality Classical chaos: δ ( t ) ∼ δ (0) e λt Motivation ϕ n ∈ L 2 ( M ) Quantum: − ∆ ϕ n = λ n ϕ n , BGS conjecture G.Casati, et al. 1980; O. Bohigas, et al. 1984: Correlations of { λ n } ∞ n =1 are universal, described by Random Matrix Ensembles from the same symmetry class – p. 3

  4. Semiclassical approach Gutzwiller’s trace formula: � i � � � ρ ( E ) = δ ( E − E n ) ∼ ¯ ρ ( E ) + ℜ A γ exp � S γ ( E ) ���� n γ ∈ PO Smooth � �� � Oscillating A γ stability factor, S γ ( E ) action of a periodic orbit γ γ Number of periodic orbits grows exponentially with length – No prediction on E n from an individual γ – All { γ } together ⇐ ⇒ spectrum – p. 4

  5. Two-point correlation function R ( ε ) = 1 ρ 2 � ρ ( E + ε/ ¯ ρ ) ρ ( E ) � E − 1 ¯ � + ∞ R ( ε ) e − 2 πiτε dε ≈ (Semiclassically) K ( τ ) = −∞ �� �� � ≈ 1 τ − ( T γ + T γ ′ ) i � ( S γ − S γ ′ ) δ A γ A ∗ γ ′ e , T 2 2 T H H γ,γ ′ E T γ , T γ ′ are periods of γ, γ ′ , T H = 2 π � ¯ ρ (Heisenberg time) ⇐ ⇒ Spectral correlations Correlations between actions of periodic orbits – p. 5

  6. Classical origins of universality K ( τ ) = c 1 τ + c 2 τ 2 . . . c 1 – diagonal approximation γ = γ ′ M. Berry 1985 Diagonal approximation Sieber−Richter pairs c 2 – non-trivial correlations (Sieber-Richter pairs) M. Sieber K. Richter 2001 ⇒ Duration of encounter ∼ τ E = λ − 1 | log � | S γ − S γ ′ ∼ � = � �� � Ehrenfest time All orders in τ = RMT result S. Müller, et. al., 2004 – p. 6

  7. Symbolic Dynamics Continues flow = ⇒ Map T (Poincare section) p Phase space partition: 0 1 ... ... V = V 0 ∪ V 1 ∪ · · · ∪ V l − 1 l−2 l−1 q Point in the phase space: x = . . . x − 1 x 0 . x 1 x 2 . . . ; x i ∈ { 0 , 1 , . . . l − 1 } � �� � � �� � � �� � future past alphabet Tx = . . . x − 1 x 0 x 1 . x 2 x 3 . . . Periodic orbits ⇐ ⇒ [ x 1 x 2 . . . x n ] – p. 7

  8. Partner orbits B. G, V. Osipov 2013 E A C D B F [ γ 1 ] = [ AECFBEDF ] , [ γ 2 ] = [ AEDFBECF ] E = e 1 e 2 . . . e p , F = f 1 f 2 . . . f p Each p-subsequence of symbols from γ 1 appears in γ 2 Locally similar but not identical = ⇒ Two orbits pass approximately the same points of the phase space: � γ 1 − γ 2 � ∼ Λ − p – p. 8

  9. Many-particle systems N p 2 � n H = 2 m + V ( x n ) + V int ( x n − x n +1 ) n =1 Chaos, Local interactions, Invariance under n → n + 1 Two views on dynamics: Many−particle Periodic Orbit Single−particle Periodic Orbit d−dimensions Nd−dimensions 1 2 N Q: Is the single-particle theory of Quantum Chaos applicable? – p. 9

  10. Semiclassical “Field Theory” Continuous limit: n → η ∈ [0 , ℓ ] , x n,t → φ ( η, t ) N q 2 ˙ 2 m + κ ( x n,t − x n +1 ,t ) 2 − V ( x n,t ) n,t � L = = ⇒ n =1 � ℓ dη ( ∂ t φ ( η, t )) 2 + ( ∂ η φ ( η, t )) 2 − V ( φ ( η, t )) L = 0 1) PO -are 2D toric surfaces in d -dim space (Rather than 1D lines in N · d -dim) 2) Encounters are “rings” (Rather than 1D stretches) of “width” ∼ λ − 1 | log � eff | – p. 10

  11. 2D Symbolic Dynamics T T 4 4 2 1 2 1 2 3 4 3 1 3 4 2 3 2 4 2 1 2 1 3 1 3 3 4 2 1 2 1 4 2 3 3 3 4 3 2 1 1 2 1 4 3 4 1 1 1 3 1 1 1 2 3 4 2 2 3 1 2 4 1 2 2 1 4 4 4 3 1 4 4 4 1 4 3 4 2 2 1 3 2 4 1 4 1 2 3 1 3 4 3 2 3 2 4 2 4 1 3 4 1 4 2 4 3 1 3 4 4 4 1 3 1 4 3 3 2 1 2 2 3 2 4 1 4 4 3 4 2 4 4 2 3 4 4 2 3 1 2 3 3 1 4 1 4 1 4 3 1 3 2 3 2 2 3 1 1 1 2 1 3 4 4 2 1 4 2 3 1 4 2 3 2 2 3 1 3 2 1 3 4 1 4 2 1 2 3 3 4 1 3 3 1 1 N 1) Small alphabet (does not grow with N ) 2) Uniqueness: Each PO Γ is uniquely encoded by M Γ 3) Locality: r × r square of symbols around ( n, t ) defines position of the n ’th particle at the time t up to error ∼ Λ − r Encounter - repeating region of symbols – p. 11

  12. Different types of Partner Orbits A. Single particle partners: T T A A E E E D C F A F B C D B B E E C D F F A A F N N Dominant iff T � W � � N - Single particle theory W � ∼ Λ − 1 | log � eff | ≈ Width of encounter B. Dual partners: T T A D B C A A C B D A F E F E F E E F N N Dominant iff T � W � � N - Thermodynamic, short time regime – p. 12

  13. Different types of Partner Orbits C. If T � W � , N � W � i.e. T and N are larger then “Ehrenfest scale” : T T A B E E C C B A E E ¯ Γ Γ N N Note: One encounter is enough, even if time reversal symmetry is broken B, C - Genuine many-particle Quantum Chaos! – p. 13

  14. A Lone Cat Map: T 2 → T 2 Phase space: q t , p t ∈ [0 , 1) , windings m t = ( m q t , m p t ) ∈ Z Configuration Space q a � � � � � � � � m q q t +1 a 1 q t t = − , m p p t +1 ab − 1 b p t t a, b ∈ Z . Chaos if | a + b | > 2 Newton form: ∆ q t ≡ q t +1 − 2 q t + q t − 1 = ( a + b − 2) q t − m t – p. 14

  15. Coupled-Cat Maps: T 2 N → T 2 N q i+2 q i+1 q i S ( q t , q t +1 ) = S 0 ( q t , q t +1 ) + S int ( q t ) , q t = ( q 1 ,t , q 2 ,t . . . q N ,t ) N Interacting cat maps, q n,t , p n,t ∈ [0 , 1) : N N � � S 0 = S cat ( q n,t , q n,t +1 ) + V ( q n,t ); S int = − q n,t q 1+ n,t n =1 n =1 � �� � interactions Equations of motion: p n,t = − ∂S ∂S p n,t +1 = ∂q n,t ∂q n,t +1 – p. 15

  16. Classical Particle-time Duality Newtonian form: ∆ q n,t = ( a + b − 4) q n,t + V ′ ( q n,t ) − m n,t Discrete Laplacian: ∆ f n,t ≡ f n +1 ,t + f n − 1 ,t + f n,t +1 + f n,t − 1 − 4 f n +1 ,t Particle-time symmetry: t ← → n = ⇒ ⇒ T -particle POs { Γ ′ } N -particle POs { Γ } of period T ⇐ of period N S (Γ) = S (Γ ′ ) , A Γ = A Γ ′ { m n,t } - provide symbolic encoding of POs – p. 16

  17. 2D Symbolic Dynamics T 4 4 2 1 2 1 2 3 4 3   1 3 4 2 3 2 m 1 , 1 m 2 , 1 . . . m N, 1 2 1 2 1 3 3 3 4 2 1 2 1 4 2 3 3 4 3 2 1 1 2 1 4 3 4 1 1 1 3 1 1 3   4 2 2 3 1 2 4 1 2 2 1 4 4 4 3 m 1 , 2 m 2 , 2 . . . m N, 2   4 4 4 1 4 3 4 2 1 3 2 4 1 4 1 2 M Γ = 1   3 4 3 2 3 2 4 2 4 . . . 1 3 4 1 4 2 ... . . .   1 3 4 4 4 1 3 1 4 3 3 2 1 2 2 . . . 3 1 4 4 3 4 2 4   4 2 3 4 4 2 3 1 2 1 4 1 4 1 4 3 1 3 2 3 2 2 3 1 1 m 1 ,T m 2 ,T . . . m N,T 1 3 4 4 2 1 4 2 3 1 4 2 3 2 2 3 3 2 1 4 1 4 2 1 2 3 3 4 1 3 3 1 N √ Small alphabet (does not grow with N ) √ Uniqueness + Γ can be easily restored from M Γ √ Locality ( r × r square of symbols around ( n, t ) defines approx. position of the n ’th particle at the time t ) B.G. V. Osipov (2015), B.G., L Han, R. Jafari, A. K. Saremi, P Cvitanovi´ c (2016) – p. 17

  18. Example of Partner Orbits T = 50 , N = 70 , a = 3 , b = 2 – p. 18

  19. Example of Partner Orbits 1.0 0.34 0.8 0.32 0.6 p 0.30 p 0.4 0.28 0.2 0.26 0.0 0.06 0.08 0.10 0.12 0.14 0.0 0.2 0.4 0.6 0.8 1.0 q q All the points of Γ = { ( q n,t , p n,t ) } and ¯ Γ = { (¯ q n,t , ¯ p n,t ) } are paired – p. 19

  20. Distances between paired points 50 40 1 30 10 � 3 t 20 10 � 6 10 10 � 9 1 1 10 20 30 40 50 60 70 n � 10 � 12 � q n ′ ,t ′ ) 2 + ( p n,t − ¯ p n ′ ,t ′ ) 2 , d n,t = ( q n,t − ¯ Largest distances ∼ 2 · 10 − 3 are between points in encounters – p. 20

  21. Quantisation Hannay, Berry (1980); Keating (1991) U N is L N × L N unitary matrix, L = � − 1 eff Translational symmetries: = ⇒ N subspectra approximately of the same size = L N /N Gutzwiller trace formula Rivas, Saraceno, A. de Almeida (2000) 2 � Tr ( U N ) T = � − 1 � � � det( B T N − 1) exp( − i 2 πLS Γ ) . Γ ∈ PO All entries are symmetric under exchange N ↔ T – p. 21

  22. Quantum Duality Tr ( U N ) T = Tr ( U T ) N �� 2 � � Tr ( U N ) T � 1 � � Form Factor: K N ( T ) = � 2 L N For short times T < n E = λ − 1 log L , N ∼ L T Regime dual to universal: K N ( T ) = L T − N K β ( TN/L T ) In particular for very short times L T /T < N , K β ≈ 1 K N ( T ) ≈ L T /L N Short time exponential growth instead of linear TN/L N – p. 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend