string like theory of many particle quantum chaos
play

String-like theory of many-particle Quantum Chaos Boris Gutkin - PowerPoint PPT Presentation

String-like theory of many-particle Quantum Chaos Boris Gutkin University of Duisburg-Essen Joint work with V. Al. Osipov Luchon, France March 2015 p. 1 Basic Question Quantum Chaos Theory: Standard semiclassical limit: fixed N (number


  1. String-like theory of many-particle Quantum Chaos Boris Gutkin University of Duisburg-Essen Joint work with V. Al. Osipov Luchon, France March 2015 – p. 1

  2. Basic Question Quantum Chaos Theory: Standard semiclassical limit: fixed N (number of particles), � eff → 0 Non-standard: fixed � eff , N → ∞ (Bosons) But what if � eff → 0 and N → ∞ ? – p. 2

  3. Single-particle Quantum Chaos Gutzwiller’s trace formula: � i � � � ρ ( E ) = δ ( E − E n ) ∼ ¯ ρ ( E ) + ℜ A γ exp � S γ ( E ) ���� n γ ∈ PO Smooth � �� � Oscillating A γ stability factor, S γ ( E ) action of a periodic orbit γ γ Number of periodic orbits grows exponentially with length – No prediction on E n from an individual γ – All { γ } together ⇐ ⇒ spectrum – p. 3

  4. Two-point correlation function R ( ε ) = 1 ρ 2 � ρ ( E + ε/ ¯ ρ ) ρ ( E ) � E − 1 ¯ � + ∞ R ( ε ) e − 2 πiτε dε ≈ (Semiclassically) K ( τ ) = −∞ �� �� � ≈ 1 τ − ( T γ + T γ ′ ) i A γ A ∗ � ( S γ − S γ ′ ) δ γ ′ e , T 2 2 T H H γ,γ ′ E T γ , T γ ′ are periods of γ, γ ′ , T H = 2 π � ¯ ρ (Heisenberg time) Spectral correlations ⇐ ⇒ Correlations between actions of periodic orbits – p. 4

  5. Semiclassical origins of universality K ( τ ) = c 1 τ + c 2 τ 2 . . . Diagonal approximation γ = γ ′ = ⇒ Leading order: c 1 [M. Berry 1985] Diagonal approximation Sieber−Richter pairs Sieber-Richter pairs (Non-trivial correlations) = ⇒ Second order: c 2 [M. Sieber K. Richter 2001] ⇒ Duration of encounter ∼ τ E = λ − 1 | log � | S γ − S γ ′ ∼ � = � �� � Ehrenfest time – p. 5

  6. Full theory – all orders in τ S. Müller, S. Heusler, P . Braun, F . Haake, A. Altland 2004 } τ { Σ τ n K( )= Structures of Periodic Orbits Pairing is robust under perturbation Other correlations are washed out! Pairing mechanism = ⇒ Universality of spectral correlations – p. 6

  7. Many-particle systems N p 2 � n H = 2 m + V ( x n ) + V int ( x n − x n +1 ) n =1 Chaos; Local, Homogeneous interactions i.e, invariance under n → n + 1 Many−particle Periodic Orbit Single−particle Periodic Orbit d−dimensions Nd−dimensions 1 2 N Q: Is the single-particle theory of Quantum Chaos applicable? A: Depends how large N is – p. 7

  8. Caricature: Semiclassical Field Theory Continues limit n → η ∈ [0 , ℓ ] , x n ( t ) → x ( η, t ) N x 2 ˙ � n L = 2 m − V ( x n ) − V int ( x n − x n +1 ) − → n =1 � ℓ dη ( ∂ t x ( η, t )) 2 + ( ∂ η x ( η, t )) 2 − V ( x ( η, t )) L = 0 1) PO -are 2D toric surfaces in d -dim space (Rather than 1D lines in N · d -dim) 2) Encounters are “rings” (Rather than 1D stretches) of “width” ∼ λ − 1 | log � eff | – p. 8

  9. Caricature: Semiclassical Field Theory Single-particle structure diagrams: = } { = e e 2 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� 1 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� Distinguished by order of encounters Many-particle structure diagrams: Distinguished by order and winding numbers ω of encounters! – p. 9

  10. Many-particle Quantum Chaos λ − 1 | log � eff | =: n E - Ehrenfest “number” T N λ −1 log h < T,N T ������� ������� ������� ������� ������� ������� ������� ������� = ������� ������� ������� ������� log h ������� ������� T< n E N λ ������ ������ ����� ����� ������ ������ ������ ������ ����� ����� ������ ������ ����� ����� ����� ����� ������ ������ ������ ������ ����� ����� ������ ������ ����� ����� ����� ����� ������ ������ ����� ����� −1 −1 n = λ λ [A] [B] [C] log h log h E A. If N � n E , T � n E = ⇒ only ω = (0 , 1) “single-particle” encounters Effectively single-particle Quantum Chaos B. N, T � n E , = ⇒ ω = (0 , 0) encounters dominate! C. N � n E , T � n E = ⇒ only ω = (1 , 0) encounters B, C - Genuine many-particle Quantum Chaos! – p. 10

  11. Coupled-Cat Maps q i+2 q i+1 q i S ( q t , q t +1 ) = S 0 ( q t , q t +1 ) + S int ( q t ) , q t = ( q 1 ,t , q 2 ,t . . . q N ,t ) N uncoupled cat maps, q n,t , p n,t ∈ [0 , 1] : N � S ( n ) S 0 = 0 ( q n,t , q n,t +1 ) + V ( q n,t ) n =1 Interactions: N � S int = − q n,t q 1+( n mod N ) ,t . n =1 – p. 11

  12. Coupled-Cat Maps V = 0 Z t = ( q 1 ,t , p 1 ,t , . . . q N ,t , p N ,t ) ⊺ , Z t +1 = B N Z t mod1 , with 2 N × 2 N matrix B N given by:   A B . . . B 0 0   B A B . . . 0 0          0 B A . . . 0 0  1  1 0 a    , B = − B N = , A =   . . . . . ...     . . . . . ab − 1 0 b b . . . . .       . . . A B 0 0 0     B . . . B A 0 0 Lyapunov exponents: cosh λ k = ( a + b ) / 2 − cos(2 πk/N ) , k = 1 , . . . N Full chaos: | Re λ k | > 0 , i.e. | a + b | > 4 – p. 12

  13. Particle-time Duality Newtonian form: ∆ 2 t q n,t + ∆ 2 n q n,t = ( a + b − 4) q n,t + V ′ ( q n,t ) mod 1 ∆ 2 α - discrete Laplacian: ∆ 2 α f α ≡ f α +1 − 2 f α + f α − 1 Particle-time duality: If { q n,t } solution then { q ′ n,t = q t,n } also solution! = ⇒ ⇒ T -part. PO Γ ′ of period N N -part. PO Γ of period T ⇐ 1) S (Γ) = S (Γ ′ ) 2) [ # of N -particle PO of period T ] = [ # of T -particle PO of ⇒ | det( I − B T N ) | = | det( I − B N period N ] ⇐ T ) | � πmN N − 1 T − 1 � πkT � � � � T 2 4 sin 2 = N 2 4 sin 2 Corollary: N T m =1 k =1 – p. 13

  14. 2D Symbolic Dynamics Z t +1 + M t = B N Z t , M t = (m 1 ,t , . . . m N ,t ) ⊺ , m n,t = ( m q n,t , m p n,t ) T 4 4 2 1 2 1 2 3 4 3 1 3 4 2 3 2   2 1 2 1 3 m 1 , 1 m 2 , 1 . . . m N, 1 3 3 4 2 1 2 1 4 2 3 3 4 3 2 1 1 2 1 4 3 4 1 1 1 3 1 1 3   4 2 2 3 1 2 4 1 2 2 1 4 4 4 3 m 1 , 2 m 2 , 2 . . . m N, 2   4 4 4 1 4 3 4 2 1 3 2 4 1 4 1 2 M Γ = 1   3 4 3 2 3 2 4 2 4 . . . 1 3 4 1 4 2 ... . . .   1 3 4 4 4 1 3 1 4 3 3 2 1 2 2 . . . 3 1 4 4 3 4 2 4   4 2 3 4 4 2 3 1 2 1 4 1 4 1 4 3 1 3 2 3 2 2 3 1 1 m 1 ,T m 2 ,T . . . m N,T 1 3 4 4 2 1 4 2 3 1 4 2 3 2 2 3 3 2 1 4 1 4 2 1 2 3 3 4 1 3 3 1 N – p. 14

  15. 2D Symbolic Dynamics Z t +1 + M t = B N Z t , M t = (m 1 ,t , . . . m N ,t ) ⊺ , m n,t = ( m q n,t , m p n,t ) T 4 4 2 1 2 1 2 3 4 3   1 3 4 2 3 2 m 1 , 1 m 2 , 1 . . . m N, 1 2 1 2 1 3 3 3 4 2 1 2 1 4 2 3 3 4 3 2 1 1 2 1 4 3 4 1 1 1 3 1 1 3   4 2 2 3 1 2 4 1 2 2 1 4 4 4 3 m 1 , 2 m 2 , 2 . . . m N, 2   4 4 4 1 4 3 4 2 1 3 2 4 1 4 1 2 M Γ = 1   3 4 3 2 3 2 4 2 4 . . . 1 3 4 1 4 2 ... . . .   1 3 4 4 4 1 3 1 4 3 3 2 1 2 2 . . . 3   1 4 4 3 4 2 4 4 2 3 4 4 2 3 1 2 1 4 1 4 1 4 3 1 3 2 3 2 2 3 1 1 m 1 ,T m 2 ,T . . . m N,T 1 3 4 4 2 1 4 2 3 1 4 2 3 2 2 3 3 2 1 4 1 4 2 1 2 3 3 4 1 3 3 1 N 1) Small alphabet (does not grow with N ) 2) Uniqueness: Each PO Γ is uniquely encoded by M Γ Γ can be easily restored from M Γ 3) Locality: r × r square of symbols around ( n, t ) defines position of the n ’th particle at the time t up to error ∼ Λ − r – p. 15

  16. Partner Orbits T T T T A A E E 2 2 D A C D A C B B B A D A E 1 E 1 C E 1 E E E 1 E E 1 E E 2 2 1 2 2 C E 2 E 2 B D E E 1 1 A A N N N N T T A B E E C C B A E E ¯ Γ Γ N N Γ is obtained by reshuffling M Γ M ¯ Note: One encounter is enough, even if time reversal symmetry is broken – p. 16

  17. Example of Partner Orbits T = 50 , N = 70 , a = 3 , b = 2 – p. 17

  18. Example of Partner Orbits 1.0 0.34 0.8 0.32 0.6 p 0.30 p 0.4 0.28 0.2 0.26 0.0 0.06 0.08 0.10 0.12 0.14 0.0 0.2 0.4 0.6 0.8 1.0 q q All the points of Γ = { ( q n,t , p n,t ) } and ¯ Γ = { (¯ q n,t , ¯ p n,t ) } are paired – p. 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend