computer graphics iii
play

Computer graphics III Light reflection, BRDF Jaroslav Kivnek, MFF - PowerPoint PPT Presentation

Computer graphics III Light reflection, BRDF Jaroslav Kivnek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Basic radiometric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Kivnek 2015 Interaction of light with a surface


  1. Computer graphics III – Light reflection, BRDF Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz

  2. Basic radiometric quantities Image: Wojciech Jarosz CG III (NPGR010) - J. Křivánek 2015

  3. Interaction of light with a surface  Absorption  Reflection  Transmission / refraction  Reflective properties of materials determine  the relation of reflected radiance L r to incoming radiance L i , and therefore  the appearance of the object: color, glossiness, etc. CG III (NPGR010) - J. Křivánek 2015

  4. Interaction of light with a surface  Same illumination  Different materials Source: MERL BRDF database CG III (NPGR010) - J. Křivánek 2015

  5. BRDF – Formal definition  B idirectional R eflectance D istribution F unction n L i ( w i ) „ o utgoing “ L r ( w o ) d w i q i q o „ i ncoming“ „ r eflected “ w d L ( )  w  w  1 f r ( ) r o [ sr ] i o w  q  w L ( ) cos d i i i i 5

  6. BRDF  Mathematical model of the reflection properties of a surface  Intuition  Value of a BRDF = probability density , describing the event that a light energy “packet”, or “photon” , coming from direction w i gets reflected to the direction w o .   w  w   f ( ) 0 ,  Range: r i o CG III (NPGR010) - J. Křivánek 2015

  7. BRDF Westin et al. Predicting Reflectance Functions from Complex Surfaces, SIGGRAPH 1992.  The BRDF is a model of the bulk behavior of light on the microstructure when viewed from distance CG III (NPGR010) - J. Křivánek 2015

  8. BRDF properties  Helmholz reciprocity (always holds in nature, a physically-plausible BRDF model must follow it) w  w  w  w f ( ) f ( ) r i o r o i CG III (NPGR010) - J. Křivánek 2015

  9. BRDF properties  Energy conservation  A patch of surface cannot reflect more light energy than it receives CG III (NPGR010) - J. Křivánek 2015

  10. BRDF (an)isotropy  Isotropic BRDF = invariant to a rotation around surface normal     q  q   q    q    f , ; , f , ; , r i i o o r i i o o    q q    f , , r i o o i CG III (NPGR010) - J. Křivánek 2015

  11. Surfaces with anisotropic BRDF CG III (NPGR010) - J. Křivánek 2015

  12. Anisotropic BRDF  Different microscopic roughness in different directions (brushed metals, fabrics , …) CG III (NPGR010) - J. Křivánek 2015

  13. Isotropic vs. anisotropic BRDF  Isotropic BRDFs have only 3 degrees of freedom  Instead of  i and  o it is enough to consider only D   i –  o  But this is not enough to describe an anisotropic BRDF  Description of an anisotropic BRDF   i and  o are expressed in a local coordinate frame ( U , V , N ) U … tangent – e.g. the direction of brushing  V … binormal  N … surface normal … the Z axis of the local coordinate frame  CG III (NPGR010) - J. Křivánek 2015

  14. Reflection equation  A.k.a. reflectance equation, illumination integral, OVTIGRE (“ outgoing, vacuum, time-invariant, gray radiance equation ”)  “How much total light gets reflected in the direction w o ?“  From the definition of the BRDF, we have w  w  w  w  q w d L ( ) f ( ) L ( ) cos d r o r i o i i i i CG III (NPGR010) - J. Křivánek 2015

  15. Reflection equation  Total reflected radiance: integrate contributions of incident radiance, weighted by the BRDF, over the hemisphere  w  w  w  w  q w L ( ) L ( ) f ( ) cos d r o i i r i o i i H ( x ) upper hemisphere over x = CG III (NPGR010) - J. Křivánek 2015

  16. Reflection equation  Evaluating the reflectance equation renders images!!!  Direct illumination Environment maps  Area light sources  etc.  CG III (NPGR010) - J. Křivánek 2015

  17. Energy conservation – More rigorous  Reflected flux per unit area (i.e. radiosity B ) cannot be larger than the incoming flux per unit surface area (i.e. irradiance E ).  w q w L ( ) cos d B r o o o    w q w E L ( ) cos d i i i i     w  w w q w q w f ( ) L ( ) cos d cos d r i o i i i i o o    w q w L ( ) cos d i i i i  1 CG III (NPGR010) - J. Křivánek 2015

  18. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) 18 Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  19. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) 19 Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  20. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) 20 Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  21. Surface appearance and the BRDF Appearance BRDF lobe (for four different viewing directions) 21 Souce: Ngan et al. Experimental analysis of BRDF models, http://people.csail.mit.edu/addy/research/brdf/

  22. Reflectance  Ratio of the incoming and outgoing flux  A.k.a . „albedo“ ( used mostly for diffuse reflection)  Hemispherical-hemispherical reflectance  See the “Energy conservation” slide  Hemispherical-directional reflectance  The amount of light that gets reflected in direction w o when illuminated by the unit, uniform incoming radiance.   w  w  w  w q w ( ) a ( ) f ( ) cos d o o r i o i i H ( x ) CG III (NPGR010) - J. Křivánek 2015

  23. Hemispherical-directional reflectance  Nonnegative    w o  ( ) 0 , 1  Less than or equal to 1 (energy conservation)  Equal to directional-hemispherical reflectance  What is the percentage of the energy coming from the incoming direction w i that gets reflected (to any direction )?“  Equality follows from the Helmholz reciprocity CG III (NPGR010) - J. Křivánek 2015

  24. CG III (NPGR010) - J. Křivánek 2015

  25. CG III (NPGR010) - J. Křivánek 2015

  26. BRDF components General BRDF Ideal diffuse Ideal specular Glossy, (Lambertian) directional diffuse CG III (NPGR010) - J. Křivánek 2015

  27. Ideal diffuse reflection

  28. Ideal diffuse reflection CG III (NPGR010) - J. Křivánek 2015

  29. Ideal diffuse reflection  A.k.a. Lambertian reflection Johann Heinrich Lambert, „ Photometria “ , 1760.   Postulate: Light gets reflected to all directions with the same probability, irrespective of the direction it came from  The corresponding BRDF is a constant function (independent of w i , w o ) w  w  f ( ) f r , d i o r , d CG III (NPGR010) - J. Křivánek 2015

  30. Ideal diffuse reflection  Reflection on a Lambertian surface:  w  w q w L ( ) f L ( ) cos d o o r , d i i i i H ( x )  f E r , d irradiance  View independent appearance  Outgoing radiance L o is independent of w o  Reflectance (derive)     f , d r d CG III (NPGR010) - J. Křivánek 2015

  31. Ideal diffuse reflection  Mathematical idealization that does not exist in nature  The actual behavior of natural materials deviates from the Lambertian assumption especially for grazing incidence angles CG III (NPGR010) - J. Křivánek 2015

  32. White-out conditions  Under a covered sky we cannot tell the shape of a terrain covered by snow  We do not have this problem close to a localized light source.  Why? CG III (NPGR010) - J. Křivánek 2015

  33. White-out conditions  We assume sky radiance independent of direction (covered sky) w  sky L ( x , ) L i i  We also assume Lambertian reflection on snow  Reflected radiance given by:    snow snow sky L L o d i White-out!!! CG III (NPGR010) - J. Křivánek 2015

  34. Ideal mirror reflection

  35. Ideal mirror reflection CG III (NPGR010) - J. Křivánek 2015

  36. CG III (NPGR010) - J. Křivánek 2015

  37. CG III (NPGR010) - J. Křivánek 2015 Nishino, Nayar: Eyes for Relighting, SIGGRAPH 2004

  38. The law of reflection n  o q i q o  i q o  q i  o   i +  mod 2   Direction of the reflected ray (derive the formula) w  w   w 2 ( n ) n o i i CG III (NPGR010) - J. Křivánek 2015

  39. Digression: Dirac delta distribution  Definition (informal): Image: Wikipedia  The following holds for any f :  Delta distribution is not a function (otherwise the integrals would = 0) CG III (NPGR010) - J. Křivánek 2015

  40. BRDF of the ideal mirror  BRDF of the ideal mirror is a Dirac delta distribution We want: n q o  q i q   q q    L ( , ) R ( ) L ( , ) q i q o r o o i i o o Fresnel reflectance (see below)  q  q       (cos cos ) ( ) q  q   R q f ( , ; , ) ( ) i o i o r , m i i o o i q cos i CG III (NPGR010) - J. Křivánek 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend