complex equiangular tight frames
play

Complex Equiangular Tight Frames Joel A. Tropp jtropp@umich.edu - PowerPoint PPT Presentation

Complex Equiangular Tight Frames Joel A. Tropp jtropp@umich.edu Department of Mathematics The University of Michigan With contributions from Inderjit Dhillon, Robert Heath Jr., Nick Ramsey, Thomas Strohmer, and M aty as Sustik 1


  1. Complex Equiangular Tight Frames ❦ Joel A. Tropp jtropp@umich.edu Department of Mathematics The University of Michigan With contributions from Inderjit Dhillon, Robert Heath Jr., Nick Ramsey, Thomas Strohmer, and M´ aty´ as Sustik 1

  2. Equiangular Tight Frames ❦ ❧ Let { x m } be a collection of N unit vectors in C d with N ≥ d ❧ A lower bound on the maximum correlation between a pair of vectors: � N − d def max m � = n |� x m , x n �| ≥ = µ ( d, N ) d ( N − 1) ❧ The bound is met if and only if 1. The vectors are equiangular 2. The vectors form a tight frame ❧ If the bound is met, we refer to the matrix X = � x 1 � as a . . . x N ( d, N ) equiangular tight frame or ETF Complex ETFs , SPIE Wavelets ξ , 31 July 2005 2

  3. Examples of ETFs ❦ ❧ When N = d : An orthonormal basis ❧ When N = d + 1 : The vertices of a regular simplex ❧ Four vectors in C 2 : � √ 1 � 3 1 1 1 √ e 2 π i / 3 √ e 4 π i / 3 √ √ 0 2 2 2 3 ❧ Six vectors in R 3 : Six nonantipodal vertices of a regular icosahedron Complex ETFs , SPIE Wavelets ξ , 31 July 2005 3

  4. ETFs are Sporadic ❦ d d N 2 3 4 5 6 N 2 3 4 5 6 3 .. .. .. 20 .. .. .. . . R R 4 .. .. 21 .. .. .. . C R R C 5 .. . .. 22 .. .. .. . . R R 6 .. . 23 .. .. .. . . R R R 7 .. . 24 .. .. .. . . C C R 8 .. . . . 25 .. .. .. . C C 9 .. . . 26 .. .. .. .. . C C 10 .. .. . . 27 .. .. .. .. . R 11 .. .. . 28 .. .. .. .. . C C 12 .. .. . . C 29 .. .. .. .. . 13 .. .. C . . 30 .. .. .. .. . 14 .. .. . . . 31 .. .. .. .. C 15 .. .. . . . 32 .. .. .. .. . 16 .. .. C . R 33 .. .. .. .. . 17 .. .. .. . . 34 .. .. .. .. . 18 .. .. .. . . 35 .. .. .. .. . 19 .. .. .. . . 36 .. .. .. .. C Reference: [JAT–Dhillon–Heath–Strohmer 2005] Complex ETFs , SPIE Wavelets ξ , 31 July 2005 4

  5. Classical Upper Bound ❦ Theorem 1. If there exists a complex ( d, N ) ETF, then N ≤ d 2 N ≤ ( N − d ) 2 . If there exists a real ( d, N ) ETF, then N ≤ 1 2 d ( d + 1) N ≤ 1 2 ( N − d ) ( N − d + 1) . ❧ Reference: [van Lint–Seidel 1966] ❧ Other proofs: [Conway et al. 1996, Sustik et al. 2003] Complex ETFs , SPIE Wavelets ξ , 31 July 2005 5

  6. Integrality Condition for Real ETFs ❦ Theorem 2. [SuTDH 2004] Assume that N � = 2 d . If there exists a real ( d, N ) ETF, then � � d ( N − 1) ( N − 1)( N − d ) ≡ ≡ 1 (mod 2) . N − d d If there exists a real ( d, 2 d ) ETF, then 2 d − 1 = a 2 + b 2 d ≡ 1 (mod 2) and where a, b ∈ Z . ❧ Equivalence between real ETFs and strongly regular graphs ❧ Related results: [Holmes–Paulsen 2004] Complex ETFs , SPIE Wavelets ξ , 31 July 2005 6

  7. Harmonic ETFs ❦ A (d, N) harmonic ETF over the p -th roots of unity has the form   1 � � 2 π i √ exp where a jn ∈ Z p a jn     d References: [K¨ onig 1999, Strohmer–Heath 2003, Xia et al. 2005] Complex ETFs , SPIE Wavelets ξ , 31 July 2005 7

  8. Examples of Harmonic ETFs ❦ ❧ When N = d and p = 2 : Hadamard matrices ❧ When N = d and p = 4 : Complex Hadamard matrices ❧ 7 vectors in C 3 with p = 7 :   0 0 0 0 0 0 0 1 3 exp · 2 π i √ 0 1 2 3 4 5 6   7 0 3 6 2 5 1 4 ❧ 7 vectors in C 4 with p = 7 :   0 0 0 0 0 0 0 1 3 exp · 2 π i 0 1 2 3 4 5 6   √   0 2 4 6 1 3 5 7   0 4 1 5 2 6 3 Complex ETFs , SPIE Wavelets ξ , 31 July 2005 8

  9. Integrality for Harmonic ETFs ❦ Theorem 3. [JAT] Suppose that there exists a ( d, N ) harmonic ETF over the p -th roots of unity. Define γ = d ( N − d ) . N − 1 We have the following consequences. √ γ ∈ Z When p = 2 : γ = a 2 + ab + b 2 p = 3 : where a, b ∈ Z γ = a 2 + b 2 p = 4 : where a, b ∈ Z Moreover, γ ∈ Z whenever the (unnormalized) entries of the ETF are roots of unity. In all these cases, N ≤ d 2 − d + 1 . Complex ETFs , SPIE Wavelets ξ , 31 July 2005 9

  10. Harmonic ETFs with N ≥ d + 2 ❦ p = 2 3 4 Other d N p = 2 3 4 Other d N 3 7 N 7 9 13 N 13 4 7 N 7 19 ? ? ? 13 13 25 ? 5 11 N 11 37 ? 37 73 ? 73 21 N 21 10 16 Y ? Y Y 6 11 N N 11 16 Y N Y Y 19 ? ? 31 N 31 31 ? ? 46 ? ? 7 15 N N N 15 91 ? ? ? 91 22 ? ? 11 23 ? 43 ? 56 ? ? ? ? 8 15 N N ? 15 111 ? ? 29 ? 57 ? 57 Complex ETFs , SPIE Wavelets ξ , 31 July 2005 10

  11. Maximal Complex ETFs ❦ ❧ Numerical evidence strongly suggests that there is a ( d, d 2 ) complex ETF for each d = 1 , 2 , 3 , 4 , . . . . ❧ Explicit constructions exist for d = 1 , 2 , 3 , 4 , 5 , 6 , 8 . ❧ The Integrality Theorem rules out harmonic ETFs as a possible source. Open Questions: ❧ Prove that maximal ETFs always exist. ❧ Provide explicit constructions. Complex ETFs , SPIE Wavelets ξ , 31 July 2005 11

  12. Related Papers and Contact Information ❦ ❧ T. “Constructing packings in projective spaces and Grassmannian spaces via alternating projection.” ICES Report 04-23, May 2004. ❧ SuTDH. “On the existence of equiangular tight frames.” UTCS TR-04-32, July 2004. (In revision.) ❧ T. “Topics in Sparse Approximation.” Ph.D. Dissertation, August 2004. ❧ TDHSt. “Designing Structured Tight Frames via Alternating Projection.” IEEE Trans. Info. Theory , January 2005. ❧ T. “Complex Equiangular Tight Frames.” Wavelets XI, August 2005. All papers available from http://www.umich.edu/~jtropp E-mail: jtropp@umich.edu Complex ETFs , SPIE Wavelets ξ , 31 July 2005 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend