complex numbers
play

Complex Numbers Complex Numbers 1 / 19 Complex Numbers Complex - PowerPoint PPT Presentation

Complex Numbers Complex Numbers 1 / 19 Complex Numbers Complex numbers ( C ) are an extension of the real numbers. z C takes the form z = x + i y x , y R Complex Numbers 2 / 19 Complex Numbers Complex numbers ( C ) are an extension of


  1. Complex Numbers Complex Numbers 1 / 19

  2. Complex Numbers Complex numbers ( C ) are an extension of the real numbers. z ∈ C takes the form z = x + i y x , y ∈ R Complex Numbers 2 / 19

  3. Complex Numbers Complex numbers ( C ) are an extension of the real numbers. z ∈ C takes the form z = x + i y x , y ∈ R x is the real part of z (Re( z )) y is the Imaginary part of z (Im( z )) Complex Numbers 2 / 19

  4. Complex Numbers Complex numbers ( C ) are an extension of the real numbers. z ∈ C takes the form z = x + i y x , y ∈ R x is the real part of z (Re( z )) y is the Imaginary part of z (Im( z )) i is the Imaginary unit defined by the property i 2 = − 1 Complex Numbers 2 / 19

  5. Why Complex Numbers? Complex Numbers 3 / 19

  6. Why Complex Numbers? The field (a set on which + , − , × , / are defined) of real numbers is not closed algebraically , i.e. there exist polynomials with real coefficients but do not have any real solutions. For example x 2 = − 2 has no roots in R . However, for x ∈ C using the definition of i , we note that √ − 1 = i 2 ⇐ ⇒ x 2 = ( − 1)(2) = 2 i 2 = ⇒ x = ± 2 i Complex Numbers 3 / 19

  7. Complex plane z = x + i y ∈ C has two independent components ( real part x and imaginary part y ). As a result a 2D plane is needed to represent all possible combinations of x and y . The x -axis corresponds to the real axis and y -axis is the imaginary axis. Complex Plane 10 8 6 4 2 0 -2 -4 -6 -8 -10 -10 -8 -6 -4 -2 0 2 4 6 8 10 Representation of 2 + 3 i and 4 − 5 i Complex Numbers 4 / 19

  8. Working with complex numbers Let z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 addition z 1 + z 2 = ( x 1 + x 2 ) + i ( y 1 + y 2 ) Complex Numbers 5 / 19

  9. Working with complex numbers Let z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 addition z 1 + z 2 = ( x 1 + x 2 ) + i ( y 1 + y 2 ) subtraction z 1 − z 2 = ( x 1 − x 2 ) + i ( y 1 − y 2 ) Complex Numbers 5 / 19

  10. Working with complex numbers Let z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 addition z 1 + z 2 = ( x 1 + x 2 ) + i ( y 1 + y 2 ) subtraction z 1 − z 2 = ( x 1 − x 2 ) + i ( y 1 − y 2 ) multiplication z 1 z 2 = ( x 1 + i y 1 )( x 2 + i y 2 ) = x 1 x 2 + i x 1 y 2 + i y 1 x 2 + i 2 y 1 y 2 = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + y 1 x 2 ) Complex Numbers 5 / 19

  11. Working with complex numbers Let z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 Complex conjugate ¯ z := x − i y is the complex conjugate of z = x + i y Complex Numbers 6 / 19

  12. Working with complex numbers Let z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 Complex conjugate ¯ z := x − i y is the complex conjugate of z = x + i y Computing Im and Re parts using complex conjugate Re( z ) = z + ¯ z = ( x + i y ) + ( x − i y ) = x 2 2 Im( z ) = z − ¯ z = ( x + i y ) − ( x − i y ) = y 2 i 2 i Complex Numbers 6 / 19

  13. Working with complex numbers Let z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 Complex conjugate ¯ z := x − i y is the complex conjugate of z = x + i y Computing Im and Re parts using complex conjugate Re( z ) = z + ¯ z = ( x + i y ) + ( x − i y ) = x 2 2 Im( z ) = z − ¯ z = ( x + i y ) − ( x − i y ) = y 2 i 2 i absolute value Complex Numbers 6 / 19

  14. Working with complex numbers Let z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 Complex conjugate ¯ z := x − i y is the complex conjugate of z = x + i y Computing Im and Re parts using complex conjugate Re( z ) = z + ¯ z = ( x + i y ) + ( x − i y ) = x 2 2 Im( z ) = z − ¯ z = ( x + i y ) − ( x − i y ) = y 2 i 2 i absolute value √ x 2 + y 2 = � � | z | := ( x + i y )( x − i y ) = z ¯ z Complex Numbers 6 / 19

  15. Working with complex numbers division = x 1 + i y 1 z 1 x 2 + i y 2 z 2 � x 1 + i y 1 �� x 2 − i y 2 � = (make the denominator real) x 2 + i y 2 x 2 − i y 2 = x 1 x 2 + y 1 y 2 + i x 1 x 2 − y 1 x 2 x 2 2 + y 2 x 2 2 + y 2 2 2 Complex Numbers 7 / 19

  16. Complex numbers in MATLAB WARNING: Do not use the i as a variable in your code. Defining complex numbers: >> z1=2+3i; z2 = 4-5i; or >>z1 = complex(2,3) ( Use this option, especially if you want to plot real numbers on the complex plane ) To extract the real and imaginary parts use the MATLAB functions real and imag , resp. as Use norm and conj to compute | z | and ¯ z , resp. > z1=2+3i; z2 = 4-5i; > z1=2+3i; z2 = 4-5i; 1 > 1 > > real(z1) > norm(z1) 2 > 2 > ans = ans = 3 3 2 3.6056 4 4 > imag(z1) > conj(z1) 5 > 5 > ans = ans = 6 6 3 2.0000 - 3.0000i 7 7 We can also define functions and do complex arithmetic as usual Complex Numbers 8 / 19

  17. Complex numbers in MATLAB - plotting Plotting points Use the MATLAB plot function as plot(z,LineSpec) . e.g. to plot a red dotted complex point of size 20: >>plot(z1, ' r. ' , ' MarkerSize ' ,20) Complex Numbers 9 / 19

  18. Complex numbers in MATLAB - plotting Plotting points Use the MATLAB plot function as plot(z,LineSpec) . e.g. to plot a red dotted complex point of size 20: >>plot(z1, ' r. ' , ' MarkerSize ' ,20) Plotting lines Again use the MATLAB plot function e.g. >>plot([z0 z1], ' b-- ' , ' Linewidth ' ,2) will join the points z 1 and z 2 with a black dashed line. Complex Numbers 9 / 19

  19. Adding complex numbers - a geometric view Parallelogram law z 1 = 2 + 3 i z 2 = 4 − 5 i z 3 = z 1 + z 2 = 6 − 2 i Complex Addition 10 8 6 4 2 0 -2 -4 -6 -8 -10 -10 -8 -6 -4 -2 0 2 4 6 8 10 Complex Numbers 10 / 19

  20. Multiplication by scalars z 1 = 2 + 3 i Multiplication by scalars 10 8 6 4 2 0 -2 -4 -6 -8 -10 -10 -8 -6 -4 -2 0 2 4 6 8 10 Complex Numbers 11 / 19

  21. Multiplying complex numbers just “foil” it out If z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 z 1 z 2 = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + y 1 x 2 ) Complex Numbers 12 / 19

  22. Multiplying complex numbers just “foil” it out If z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 z 1 z 2 = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + y 1 x 2 ) BUT...to really appreciate this let’s doing some plotting Complex Numbers 12 / 19

  23. Multiplying complex numbers – Polar coordinates Recall that given a point ( x , y ) in R 2 , we can write this point in the form ( r , θ ) with x = r cos θ y = r sin θ x 2 + y 2 = r 2 y x = tan θ Complex Numbers 13 / 19

  24. Multiplying complex numbers – Polar coordinates Recall that given a point ( x , y ) in R 2 , we can write this point in the form ( r , θ ) with x = r cos θ y = r sin θ x 2 + y 2 = r 2 y x = tan θ Polar Representation of Complex numbers If z = x + i y then we can write z as: z = r cos θ + i r sin θ � x 2 + y 2 r = | z | = Complex Numbers 13 / 19

  25. de Moivre’s Formula When z = r cos θ + i r sin θ , and n is any natural number, z n = r n cos( n θ ) + i r n sin( n θ ) This means when we compute z n the result is a complex number with length raised to the power n and rotated by an angle n θ . Complex Numbers 14 / 19

  26. de Moivre’s Formula When z = r cos θ + i r sin θ , and n is any natural number, z n = r n cos( n θ ) + i r n sin( n θ ) This means when we compute z n the result is a complex number with length raised to the power n and rotated by an angle n θ . Powers 20 18 16 14 √ 12 2 , θ = π z 1 = 2 + 2 i → | z | = 2 10 4 8 √ 6 2) 2 = 8 , 2 θ = π 1 has r 2 = (2 z 2 4 2 2 0 √ 8 and 3 θ = 3 π 1 has r 3 = 8 z 3 -2 -4 4 -6 -8 -10 -12 -14 -16 -18 -20 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 Complex Numbers 14 / 19

  27. Multiplying complex numbers If z 1 = r cos( θ ) + i sin( θ ) and z 2 = s cos( ψ ) + i s sin( ψ ), one can show (using trig identities) that z 1 z 2 = rs cos( θ + ψ ) + i rs sin( θ + ψ ) lengths are multiplied and angle arguments are added Complex Numbers 15 / 19

  28. Segments in the complex plane z 1 = 2 + 3 i z 2 = 6 + 5 i 7 6 z 2 5 4 z 1 3 z 2 − z 1 2 1 0 0 1 2 3 4 5 6 7 Complex Numbers 16 / 19

  29. Segments in the complex plane 1 z 1 + 1 z 1 = 2 + 3 i z 2 = 6 + 5 i , 2( z 2 − z 1 ) 2( z 2 − z 1 ) 7 6 z 2 5 z 1 + 1 2( z 2 − z 1 ) 4 z 1 3 z 2 − z 1 2 1 2( z 2 − z 1 ) 1 0 0 1 2 3 4 5 6 7 Complex Numbers 17 / 19

  30. Chaos game 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.5 0 0.5 Rules Color each vertex of an equilateral triangle with a different color. 1 2 Color a six-sided die so that 2 faces are red, 2 are yellow and 2 are blue Choose a random starting point inside the triangle (this rule may be relaxed) 3 4 Roll the die. Move half the distance from the seed towards the vertex with the same color as the 5 number rolled. Roll again from the point marked, move half the distance towards the vertex of the same 6 color as the number rolled. Mark the point, repeat. 7 Complex Numbers 18 / 19

  31. Chaos game Generalize the chaos.m script to a 5 sided die and a regular pentagon with coordinates 0 + i √ √ − 1 � 5 + 1 10 + 2 4( 5 − 1) i 4 √ √ − 1 � 5 − 1 10 − 2 4( 5 + 1) i 4 √ √ 1 � 5 − 1 10 − 2 4( 5 + 1) i 4 √ √ 1 � 5 + 1 10 + 2 4( 5 − 1) i 4 Complex Numbers 19 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend