wi4243ap complex analysis
play

wi4243AP: Complex Analysis week 1, Friday K. P. Hart Faculty EEMCS - PowerPoint PPT Presentation

Section 1.1 Section 1.2 Section 1.3 wi4243AP: Complex Analysis week 1, Friday K. P. Hart Faculty EEMCS TU Delft Delft, 5 September, 2014 K. P. Hart wi4243AP: Complex Analysis Section 1.1 Section 1.2 Section 1.3 Outline Section 1.1 1


  1. Section 1.1 Section 1.2 Section 1.3 wi4243AP: Complex Analysis week 1, Friday K. P. Hart Faculty EEMCS TU Delft Delft, 5 September, 2014 K. P. Hart wi4243AP: Complex Analysis

  2. Section 1.1 Section 1.2 Section 1.3 Outline Section 1.1 1 Complex numbers Section 1.2 2 Algebra Algebra and geometry Section 1.3 3 More geometry K. P. Hart wi4243AP: Complex Analysis

  3. Section 1.1 Section 1.2 Complex numbers Section 1.3 Definition A complex number is an ordered pair ( x , y ) of real numbers. We write z = ( x , y ) = x (1 , 0) + y (0 , 1) = x + yi Note: we abbreviate (1 , 0) = 1 and (0 , 1) = i and we shall define multiplication in such a way that (0 , 1) 2 = − (1 , 0), i.e., i 2 = − 1. Notation: Re z = x — real part Im z = y — imaginary part K. P. Hart wi4243AP: Complex Analysis

  4. Section 1.1 Section 1.2 Complex numbers Section 1.3 Representation Every complex number, x + yi , corresponds to a point, ( x , y ), in the plane. z = x + yi | z | θ x 2 + y 2 ; the modulus � | z | = θ ; angle, the argument K. P. Hart wi4243AP: Complex Analysis

  5. Section 1.1 Section 1.2 Complex numbers Section 1.3 Representation We introduce some geometry via polar coordinates. Properties x = | z | cos θ y = | z | sin θ There are infinitely many values for θ . Principal value: Arg z , chosen in interval ( − π, π ] Other values: arg z = Arg z + 2 k π K. P. Hart wi4243AP: Complex Analysis

  6. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Addition and multiplication Addition: coordinate-wise z + w = x + yi + u + vi = ( x + u ) + ( y + v ) i Multiplication (use distributive law and i 2 = − 1): z · w = ( x + yi )( u + vi ) = ( xu − yv ) + ( xv + yu ) i for example: (2 + i )(3 + 4 i ) = (6 − 4) + (8 + 3) i = 2 + 11 i K. P. Hart wi4243AP: Complex Analysis

  7. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Division The formula ( x + iy )( x − iy ) = x 2 + y 2 helps with division: 1 ( x + iy )( x − iy ) = x − yi x − iy x + iy = x 2 + y 2 For example 16 + 63 i = 16 + 63 i · 3 − 4 i 3 + 4 i 3 + 4 i 3 − 4 i = (48 + 252) + ( − 64 + 189) i 9 + 16 = 300 + 125 i = 12 + 5 i 25 K. P. Hart wi4243AP: Complex Analysis

  8. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Complex conjugate We write x + yi = x − yi , the complex conjugate . Geometrically: reflection in real axis. | z | = | z | and z · z = | z | 2 Arg z = − Arg z (except when z is real and negative) z + z = 2 x = 2 Re z z − z = 2 iy = 2 i Im z z ± w = z ± w , z · w = z · w , z / w = z / w K. P. Hart wi4243AP: Complex Analysis

  9. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Multiplication Write z = r (cos ϕ + i sin ϕ ) and w = s (cos ψ + i sin ψ ), we get zw = rs (cos ϕ + i sin ϕ )(cos ψ + i sin ψ ) � � = rs (cos ϕ cos ψ − sin ϕ sin ψ ) + i (sin ϕ cos ψ + cos ϕ sin ψ ) � � = rs cos( ϕ + ψ ) + i sin( ϕ + ψ ) . So multiply moduli and add angles . K. P. Hart wi4243AP: Complex Analysis

  10. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Multiplication: example √ Set z = − 1 + i en w = 1 + 3 i . Then √ 2(cos 3 4 π + i sin 3 z = 4 π ) w = 2(cos 1 3 π + i sin 1 3 π ) √ √ zw = ( − 1 − 3) + (1 − 3) i And so . . . K. P. Hart wi4243AP: Complex Analysis

  11. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Multiplication, example . . . we find √ √ √ � cos 13 12 π + i sin 13 � ( − 1 − 3) + i (1 − 3) = 2 2 12 π √ � � cos − 11 12 π + i sin − 11 = 2 2 12 π so we write arg zw = arg z + arg w but not Arg zw = Arg z + Arg w K. P. Hart wi4243AP: Complex Analysis

  12. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Multiplication, example w z 3 4 π π 3 zw − 11 12 π K. P. Hart wi4243AP: Complex Analysis

  13. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Division Write z = r (cos ϕ + i sin ϕ ) and w = s (cos ψ + i sin ψ ), we get w = r (cos ϕ + i sin ϕ ) z s (cos ψ + i sin ψ ) = r s · cos ϕ + i sin ϕ cos ψ + i sin ψ · cos ψ − i sin ψ cos ψ − i sin ψ = r s · (cos ϕ + i sin ϕ )(cos ψ − i sin ψ ) cos 2 ψ + sin 2 ψ = r � � cos( ϕ − ψ ) + i sin( φ − ψ ) . s So divide moduli and subtract angles . K. P. Hart wi4243AP: Complex Analysis

  14. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 De Moivre’s formula For any angle θ and any integer n we have (cos θ + i sin θ ) n = cos( n θ ) + i sin( n θ ) Application: easy formulas for cos n θ and sin n θ : cos 3 θ + i sin 3 θ = cos 3 θ + 3 cos 2 θ i sin θ + 3 cos θ i 2 sin 2 θ + i 3 sin 3 θ = (cos 3 θ − 3 cos θ sin 2 θ ) + i (3 cos 2 θ sin θ − sin 3 θ ) thanks to the binomial formula K. P. Hart wi4243AP: Complex Analysis

  15. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Chebyshev polynomials Note cos 3 θ = cos 3 θ − 3 cos θ sin 2 θ = cos 3 θ − 3 cos θ (1 − cos 2 θ ) = 4 cos 3 θ − 3 cos θ So cos 3 θ = T 3 (cos θ ), where T 3 ( x ) = 4 x 3 − 3 x . T 3 is a Chebyshev polynomial ; these are used in interpolation and approximation theory. K. P. Hart wi4243AP: Complex Analysis

  16. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Chebyshev polynomials General definition: cos n θ = T n (cos θ ). Using De Moivre’s identity and the binomial formula we get � n ⌊ n / 2 ⌋ � � x n − 2 k (1 − x 2 ) k ( − 1) k T n ( x ) = 2 k k =0 See Problem 1.18 for an other formula for T n . K. P. Hart wi4243AP: Complex Analysis

  17. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Fractional exponents What is (cos θ + i sin θ ) q if q is a (proper) fraction, say q = m n ? Remember: for real positive x , by definition, n is that real positive number with y n = x m . m y = x In complex numbers: no such choice available, no positive/negative numbers. K. P. Hart wi4243AP: Complex Analysis

  18. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Fractional exponents We solve z n = (cos θ + i sin θ ) m . write z = r (cos ϕ + i sin ϕ ) ( r = | z | and ϕ = Arg z ) we get r n (cos n ϕ + i sin n ϕ ) = cos m θ + i sin m θ so r = 1 and cos n ϕ = cos m θ and sin n ϕ = sin m θ we get n ϕ = m θ + 2 k π ( k an integer) as − π < ϕ � π there are n suitable values for k m n has n values so: (cos θ + i sin θ ) K. P. Hart wi4243AP: Complex Analysis

  19. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Fractional exponents, example √ √ 2 What are the values of ( 1 2 + 1 3 ? 2 i ) 2 2 We have θ = 1 4 π , so we get 3 ϕ = 1 2 π + 2 k π or ϕ = 1 6 π + 2 3 k π with k = − 1, 0, 1, to get − π < ϕ � π . √ The values are − i ( ϕ = − 1 2 π ), 1 3 + 1 2 i ( ϕ = 1 6 π ) and √ 2 − 1 3 + 1 2 i ( ϕ = 5 6 π ) 2 K. P. Hart wi4243AP: Complex Analysis

  20. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Fractional exponents Difference between real and complex analysis: many-valued functions 1 2 a two-valued function z �→ z 2 3 a three-valued function z �→ z z �→ z − 2 5 a five-valued function K. P. Hart wi4243AP: Complex Analysis

  21. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Euler’s formula (one of the many) We write (for now as an abbreviation): e i θ = cos θ + i sin θ thanks to angle-adding we know e i θ + i ϕ = e i θ · e i ϕ (as it should be). Later we’ll see further justification for this formula. K. P. Hart wi4243AP: Complex Analysis

  22. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Euler’s formula, use If | z | = r and Arg z = θ we write z = re i θ . m n as We write the values of z m n e i ( m n θ +2 km n π ) r ( k = 0 , . . . , n − 1) m n is unambiguous. Note: r � 0 so r n θ as its m n e i m Also note: the values form a regular n -gon with r ‘first’ vertex. K. P. Hart wi4243AP: Complex Analysis

  23. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Square roots Using Euler’s formula (and because e i π = − 1) the values of √ z are √ re i 1 2 θ and − √ re i 1 2 θ Direct calculation: look at ( u + iv ) 2 = x + iy . We get u 2 − v 2 = x (real parts) 2 uv = y (imaginary parts) u 2 + v 2 = x 2 + y 2 (moduli) � Now solve . . . K. P. Hart wi4243AP: Complex Analysis

  24. Section 1.1 Algebra Section 1.2 Algebra and geometry Section 1.3 Square roots . . . the first and third to get � u 2 = 1 x 2 + y 2 + x ) or u = ± x 2 + y 2 + x ) � 1 � 2 ( 2 ( � v 2 = 1 x 2 + y 2 − x ) or v = ± x 2 + y 2 − x ) 1 � � 2 ( 2 ( Of the four combinations only two survive because of 2 uv = y . Example: ( u + iv ) 2 = 5 + 12 i gives u = ± 3 and v = ± 2; we get 3 + 2 i and − 3 − 2 i because 2 uv = 12 > 0. Don’t remember the formula but do remember the method. K. P. Hart wi4243AP: Complex Analysis

  25. Section 1.1 Section 1.2 More geometry Section 1.3 Modulus again Useful formulas: with z = x + iy we have | z | 2 = x 2 + y 2 = z · z x 2 + y 2 = | z | or � | x | , | y | � | Re z | , | Im z | � | z | K. P. Hart wi4243AP: Complex Analysis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend