wi4243ap complex analysis
play

wi4243AP: Complex Analysis week 5, Friday K. P. Hart Faculty EEMCS - PowerPoint PPT Presentation

Section 5.4: Laurent series Section 5.5: Analytic continuations Section 6.1: Singularities wi4243AP: Complex Analysis week 5, Friday K. P. Hart Faculty EEMCS TU Delft Delft, 3 october, 2014 K. P. Hart wi4243AP: Complex Analysis Section


  1. Section 5.4: Laurent series Section 5.5: Analytic continuations Section 6.1: Singularities wi4243AP: Complex Analysis week 5, Friday K. P. Hart Faculty EEMCS TU Delft Delft, 3 october, 2014 K. P. Hart wi4243AP: Complex Analysis

  2. Section 5.4: Laurent series Section 5.5: Analytic continuations Section 6.1: Singularities Outline Section 5.4: Laurent series 1 Example: arctan z An old integral An example Section 5.5: Analytic continuations 2 Uniqueness of analytic functions Reflection Principle Section 6.1: Singularities 3 Definition Classification K. P. Hart wi4243AP: Complex Analysis

  3. Section 5.4: Laurent series Section 5.5: Analytic continuations Section 6.1: Singularities A reminder Theorem Let f : D → C be analytic, let z 0 ∈ D and let R be the distance from z 0 to the complement of D (if D = C then R = ∞ ). Then on the disc { z : | z − z 0 | < R } we have ∞ � a n ( z − z 0 ) n f ( z ) = n =0 where ( ζ − z 0 ) n +1 d ζ = f ( n ) ( z 0 ) 1 f ( ζ ) � a n = 2 π i n ! C and C is any simple closed contour around z 0 lying inside D. K. P. Hart wi4243AP: Complex Analysis

  4. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Main result Theorem Let f : A → C be analytic, where A = { z : R 1 < | z − z 0 | < R 2 } (an annulus). Then for z ∈ A we have ∞ � c k ( z − z 0 ) k f ( z ) = k = −∞ where for k ∈ Z : 1 � f ( ζ ) c k = ( ζ − z 0 ) k +1 d ζ 2 π i C where C is any simple closed contour around z 0 lying inside A, oriented anticlockwise. K. P. Hart wi4243AP: Complex Analysis

  5. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Why? z r z 0 R 1 R 2 Take z inside the annulus. Take r 1 and r 2 with R 1 < r 1 < | z − z 0 | < r 2 < R 2 K. P. Hart wi4243AP: Complex Analysis

  6. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Why? z r z 0 Consider the simple closed curve C consisting of the circle C 2 of radius r 2 (anticlockwise), the segment γ (inward), the circle C 1 of radius r 1 (clockwise), the segment γ (outward) K. P. Hart wi4243AP: Complex Analysis

  7. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Why? Apply Cauchy’s formula: 1 � f ( ζ ) f ( z ) = ζ − z d ζ 2 π i C 1 � f ( ζ ) 1 � f ( ζ ) = ζ − z d ζ + ζ − z d ζ 2 π i 2 π i C 2 C 1 because the integrals along γ cancel. As in the case of Taylor series: ∞ 1 f ( ζ ) 1 f ( ζ ) � � � ( ζ − z 0 ) n +1 d ζ × ( z − z 0 ) n ζ − z d ζ = 2 π i 2 π i C 2 C 2 n =0 K. P. Hart wi4243AP: Complex Analysis

  8. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Why? On C 1 we rewrite 1 / ( ζ − z ) = − 1 / ( z − ζ ): 1 1 1 ζ − z = − z − ζ = − z − z 0 + z 0 − ζ 1 1 = − · 1 − ζ − z 0 z − z 0 z − z 0 � n ∞ 1 � ζ − z 0 � = − · z − z 0 z − z 0 n =0 The quotient has modulus r 1 / r < 1 on C 1 , so we get uniform convergence on C 1 K. P. Hart wi4243AP: Complex Analysis

  9. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Why? We get � n ∞ � ζ − z 0 1 � ζ − z d ζ = − 1 f ( ζ ) � f ( ζ ) � d ζ 2 π i 2 π i z − z 0 z − z 0 C 1 C 1 n =0 ∞ 1 � f ( ζ )( ζ − z 0 ) n d ζ × ( z − z 0 ) − ( n +1) � = − 2 π i C 1 n =0 ∞ 1 f ( ζ ) � � ( ζ − z 0 ) − n d ζ × ( z − z 0 ) − ( n +1) = − 2 π i C 1 n =0 ∞ 1 � f ( ζ ) � ( ζ − z 0 ) − n +1 d ζ × ( z − z 0 ) − n = − 2 π i C 1 n =1 K. P. Hart wi4243AP: Complex Analysis

  10. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Why? We add the results: f ( z ) is the sum of ∞ 1 � f ( ζ ) � ( ζ − z 0 ) − n +1 d ζ × ( z − z 0 ) − n − 2 π i C 1 n =1 and ∞ 1 � f ( ζ ) � ( ζ − z 0 ) n +1 d ζ × ( z − z 0 ) n 2 π i C 2 n =0 We reverse the orientation of C 1 to get rid of the minus-sign. The integrands f ( ζ ) / ( ζ − z 0 ) n +1 are analytic on the whole annulus, so we can replace C 2 and C 1 by one and the same simple closed curve. And this gives us the formula we were looking for. K. P. Hart wi4243AP: Complex Analysis

  11. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example arctan z once more We know: � 1 + iz � arctan z = 1 2 i log 1 − iz The following is another branch cut for arctan z (corresponds to positive real axis): i − i K. P. Hart wi4243AP: Complex Analysis

  12. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example arctan z once more Thus arctan z has a branch that is analytic on the annulus { z : 1 < | z |} . What is the Laurent series? 1 First for 1+ z 2 : � n ∞ ∞ ( − 1) n 1 + z 2 = 1 1 1 = 1 � − 1 � � = z 2 1 + 1 z 2 z 2 z 2 n +2 z 2 n =0 n =0 K. P. Hart wi4243AP: Complex Analysis

  13. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example arctan z once more Now integrate: � 1 arctan z = 1 + z 2 d z + c ∞ ( − 1) n � � = z 2 n +2 d z + c n =0 � ( − 1) n ∞ � = z 2 n +2 d z + c n =0 ∞ ( − 1) n +1 � = (2 n + 1) z 2 n +1 + c n =0 K. P. Hart wi4243AP: Complex Analysis

  14. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example arctan z once more We have, if | z | > 1: ∞ ( − 1) n +1 � arctan z = c + (2 n + 1) z 2 n +1 n =0 Possible values for c ? arctan 1 = π 4 + k π ( k integer) For z = 1 the series sums to − π 4 So, c = π 2 + k π ( k integer) K. P. Hart wi4243AP: Complex Analysis

  15. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example arctan z once more Observe that � 2 n +1 ∞ ( − 1) n +1 ∞ ( − 1) n � 1 = − arctan 1 � � (2 n + 1) z 2 n +1 = − 2 n + 1 z z n =0 n =0 So, in this case we have arctan z = c − arctan 1 z ; plug in z = 1 to get c = π 2 , so for | z | > 1: ∞ ( − 1) n +1 arctan z = π � 2 + (2 n + 1) z 2 n +1 n =0 K. P. Hart wi4243AP: Complex Analysis

  16. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example An old integral Reconsider a problem from week 4 (Monday): � � What is C arctan z d z ? Same as D arctan z d z . i D − i C K. P. Hart wi4243AP: Complex Analysis

  17. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example An old integral Integrate the Laurent series ∞ ( − 1) n +1 arctan z = π � 2 + (2 n + 1) z 2 n +1 n =0 because | 1 z | = 1 r , where r is the radius of D and r > 1 we have uniform convergence, so ∞ ( − 1) n +1 � � π � 1 � arctan z d z = 2 d z + z 2 n +1 d z (2 n + 1) D D D n =0 � 1 = 0 − z d z = − 2 π i D K. P. Hart wi4243AP: Complex Analysis

  18. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Some Laurent series 1 2+ i ( 1 1 1 Consider f ( z ) = ( z − i )( z +2) = z − i − z +2 ). f is analytic on three annuli around 0: { z : | z | < 1 } { z : 1 < | z | < 2 } { z : 2 < | z |} We make the three Laurent series. K. P. Hart wi4243AP: Complex Analysis

  19. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Some Laurent series First annulus: { z : | z | < 1 } . We have ∞ z − i = − 1 1 1 + iz = − 1 1 � ( − iz ) n i i n =0 and ∞ z + 2 = 1 1 1 = 1 − z � n � � 1 + z 2 2 2 2 n =0 Now add. K. P. Hart wi4243AP: Complex Analysis

  20. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Some Laurent series Second annulus: { z : 1 < | z | < 2 } . We have � i � n ∞ ∞ i n z − i = 1 1 1 = 1 � � = 1 − i z n +1 z z z z n =0 n =0 and ∞ z + 2 = 1 1 1 = 1 − z � n � � 1 + z 2 2 2 2 n =0 Now add. K. P. Hart wi4243AP: Complex Analysis

  21. Section 5.4: Laurent series Example: arctan z Section 5.5: Analytic continuations An old integral Section 6.1: Singularities An example Some Laurent series Third annulus: { z : 2 < | z |} . We have � i � n ∞ ∞ i n z − i = 1 1 1 = 1 � � = 1 − i z n +1 z z z z n =0 n =0 and � n ∞ ∞ ( − 2) n � z + 2 = 1 1 1 = 1 − 2 � � = 1 + 2 z n +1 z z z z n =0 n =0 Now add. K. P. Hart wi4243AP: Complex Analysis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend