wi4243ap wi4244ap complex analysis
play

wi4243AP/wi4244AP: Complex Analysis week 3, Monday K. P. Hart - PowerPoint PPT Presentation

2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions wi4243AP/wi4244AP: Complex Analysis week 3, Monday K. P. Hart Faculty EEMCS TU


  1. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions wi4243AP/wi4244AP: Complex Analysis week 3, Monday K. P. Hart Faculty EEMCS TU Delft Delft, 15 September, 2014 K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  2. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Outline 2.4: Cauchy-Riemann equations 1 2.5: Analyticity 2 2.6: Harmonic functions 3 3.1: The Exponential function 4 3.2: Trigonometric functions 5 3.3: Logarithmic functions 6 K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  3. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Changing variables We have x = 1 z ) and y = 1 2 ( z + ¯ 2 i ( z − ¯ z ), so f can also be considered as a function of z and ¯ z . Apply the multi-variable chain-rule: ∂ f z = ∂ x ∂ x + ∂ y ∂ f ∂ y = 1 ∂ f ∂ x − 1 ∂ f ∂ f ∂ ¯ ∂ ¯ z ∂ ¯ z 2 2 i ∂ y K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  4. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Changing variables Use real and imaginary parts and the Cauchy-Riemann equations: ∂ f z = 1 2( u x + iv x ) − 1 2 i ( u y + iv y ) = 1 2( u x − v y ) − 1 2 i ( v x + u y ) = 0 ∂ ¯ So, . . . , f is (complex) differentiable iff ∂ f z = 0 ∂ ¯ K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  5. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Analytic functions Definition A function f is analytic at z 0 if it is differentiable on some neighbourhood N ( z 0 , ε ) of z 0 . f is then also analytic at all points of N ( z 0 , ε ) the domain of an analytic function is open f ( z ) = | z | 2 is differentiable at 0 but not analytic K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  6. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Orthogonal curves Useful fact: if f = u + iv is analytic then the level curves u ( x , y ) = α and v ( x , y ) = β are always orthogonal. Use implicit differentiation d y / d x = − u x / u y on level curves of u d y / d x = − v x / v y on level curves of v Apply Cauchy-Riemann equations: � d y � d y � � � � � � − u x − v x = − u x · u y · = · = − 1 d x d x u y v y u y u x u v So there. K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  7. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Example: z 2 Because z 2 = x 2 − y 2 + 2 xyi we have the level curves of u = x 2 − y 2 (red) v = 2 xy (blue) . K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  8. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Harmonic functions Definition A function φ : R 2 → R is harmonic on a domain D if it is twice differentiable and φ xx ( x , y ) + φ yy ( x , y ) = 0 on all of D If f = u + iv is analytic then u and v are harmonic. u xx = v yx and v xx = − u yx u yy = − v xy and v yy = u xy Now add. We will see later that all these derivatives actually exist K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  9. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Harmonic conjugate If u and v are harmonic and such that f = u + iv is analytic then v is a harmonic conjugate of u . Equivalently: u and v satisfy u x = v y and u y = − v x — the Cauchy-Riemann equations. This is not symmetric: u is not a conjugate of v . z 2 = x 2 − y 2 + 2 xyi is analytic but iz 2 = 2 xy + ( x 2 − y 2 ) i is not. K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  10. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Finding harmonic conjugates If u is harmonic is there a harmonic conjugate? On simply connected domains: yes. How to find it? Force the Cauchy-Riemann equations to hold: v can be written as � � v ( x , y ) = − u y d x and v ( x , y ) = u x d y Just try this! K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  11. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions 2 ln( x 2 + y 2 ) Example: 1 2 ln( x 2 + y 2 ) is harmonic on the right-hand half plane u ( x , y ) = 1 (check) We have x y u x = x 2 + y 2 and u y = x 2 + y 2 Integrate � y � x v ( x , y ) = − x 2 + y 2 d x and v ( x , y ) = x 2 + y 2 d y K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  12. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions 2 ln( x 2 + y 2 ) Example: 1 We get � x 2 + y 2 d y = arctan y x v ( x , y ) = x + h 1 ( x ) and � x 2 + y 2 d x = − arctan x y v ( x , y ) = − y + h 2 ( y ) Remember: if x > 0 then arctan x + arctan 1 x = π 2 and if x < 0 then arctan x + arctan 1 x = − π 2 K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  13. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions 2 ln( x 2 + y 2 ) Example: 1 Since arctan y x and − arctan x y differ by a constant we conclude that v ( x , y ) = arctan y x + c on the right-hand half plane. K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  14. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions 2 ln( x 2 + y 2 ) Example: 1 2 ln( x 2 + y 2 ) is harmonic on the whole complex plane, Note: 1 except at (0 , 0); can we define v ( x , y ) everywhere too? Suppose we want v (1 , 1) = π 4 We must choose v ( x , y ) = arctan y x on the right-hand half plane On the upper half plane we (must) take v ( x , y ) = − arctan x y + π 2 On the lower half plane we must take v ( x , y ) = − arctan x y − π 2 (because v (1 , − 1) = − π 4 ) But now we cannot get past the negative real axis. So: simple connectivity is necessary. K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  15. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions We look at e z Remember Definition If z = x + iy then, by definition, e z = e x (cos y + i sin y ) Re e z = e x cos y and Im e z = e x sin y | e z | = e x and arg e z = y e z e w = e z + w e z +2 π i = e z K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  16. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions e z is an entire function We have seen: e z is real differentiable everywhere and � u x � e x cos y − e x sin y � � u y = e x sin y e x cos y v x v y so, by the C-R equations, it is complex differentiable everywhere. It is an entire function (analytic on the whole complex plane). ( e z ) ′ = e z : the matrix on the right represents multiplication by e z . K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  17. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions It is the only sensible choice Theorem f ( z ) = e z is the only function that satisfies 1 it is entire 2 f ′ ( z ) = f ( z ) 3 f (0) = 1 See the book for a derivation. K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  18. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Mapping behaviour Level curves of e x cos y (red) and e x sin y (blue) K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  19. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions sin z and cos z Definition We use the Euler formulas to define sin z = e iz − e − iz and cos z = e iz + e − iz 2 i 2 Compare with hyperbolic functions: sin z = 1 i sinh iz and cos z = cosh iz or sinh z = 1 i sin iz and cosh z = cos iz K. P. Hart wi4243AP/wi4244AP: Complex Analysis

  20. 2.4: Cauchy-Riemann equations 2.5: Analyticity 2.6: Harmonic functions 3.1: The Exponential function 3.2: Trigonometric functions 3.3: Logarithmic functions Formulas Use addition formulas: sin( x + iy ) = sin x cos iy + cos x sin iy = sin x cosh y + i cos x sinh y and cos( x + iy ) = cos x cos iy − sin x sin iy = cos x cosh y − i sin x sinh y After some manipulations: � � sin 2 x + sinh 2 y and | cos z | = cos 2 x + sinh 2 y | sin z | = K. P. Hart wi4243AP/wi4244AP: Complex Analysis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend