camera motion identification in the rough indexing
play

Camera Motion Identification in the Rough Indexing Paradigm Petra - PowerPoint PPT Presentation

Camera Motion Identification in the Rough Indexing Paradigm Petra KRMER and Jenny BENOIS-PINEAU LaBRI University Bordeaux I, France {petra.kraemer,jenny.benois}@labri.fr Camera Motion Identification in the Rough Indexing Paradigm


  1. Camera Motion Identification in the Rough Indexing Paradigm Petra KRÄMER and Jenny BENOIS-PINEAU LaBRI – University Bordeaux I, France {petra.kraemer,jenny.benois}@labri.fr Camera Motion Identification in the Rough Indexing Paradigm – p.1/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  2. Introduction Task: Given the shot boundary reference Identify the shots in which a certain camera motion (pan, tilt, zoom) is present Rough Indexing Paradigm: Work on a lower spatial and temporal resolution i.e. P-Frames Aim: Reuse motion low-level descriptors from the compressed stream Main challenge in TRECVID 2005: Jitter camera motion due to hand-carried cameras Camera Motion Identification in the Rough Indexing Paradigm – p.2/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  3. Overview P-Frames 1 Global Motion Estimation ˆ θ j 2 Signifi cance Value Computation s j 3 Motion Segmentation ¯ s m 4 Thresholding ¯ ζ m 5 Classifi cation Motion feature j related to frames, m related to segments of homogeneous motion Camera Motion Identification in the Rough Indexing Paradigm – p.3/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  4. Overview P-Frames 1 Global Motion Estimation ˆ θ j 2 Signifi cance Value Computation s j 3 Motion Segmentation ¯ s m 4 Thresholding ¯ ζ m 5 Classifi cation Motion feature j related to frames, m related to segments of homogeneous motion Camera Motion Identification in the Rough Indexing Paradigm – p.3/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  5. Global Motion Estimation Robust global motion estimator for P-Frames [DBP01]: P Estimation of the affi ne 2D motion model: 1 � � � � � � � � ˆ θ j dx i a 1 a 2 a 3 x i = + 2 dy i a 4 a 5 a 6 y i s j 3 Based on the weighted least squares method: ¯ s m 4 θ = ( H T WH ) − 1 H T WZ ˆ ¯ ✛ ✘ ζ m 5 ˆ = ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) T θ Mf MPEG motion compensation vectors Z macroblock centers H ✚ ✙ weights defi ned by the derivative of the Tukey function W Camera Motion Identification in the Rough Indexing Paradigm – p.4/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  6. Global Motion Estimation P The derivative of the Tukey function: 1 r ( r 2 − λ 2 � r ) 2 if | r | < λ r ˆ θ j ψ ( r, λ r ) = 0 otherwise 2 s j The weights are [OB95]: 3 ¯ s m w i = ψ ( r i ) 4 ¯ r i ✛ ✘ ζ m ψ 5 10 8 threshold λ r 6 4 Mf residuals r i = z i − ˆ z i 2 0 i -th MPEG motion vector z i -2 ✚ ✙ -4 estimation of z i z i ˆ -6 -8 -10 -4 -3 -2 -1 0 1 2 3 4 Camera Motion Identification in the Rough Indexing Paradigm – p.5/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  7. Global Motion Estimation Motion Compensation Vectors (29087) Estimated Vectors (29087) P 150 150 100 100 1 50 50 ˆ θ j 0 0 2 -50 -50 s j -100 -100 3 ✬ ✩ a) b) ¯ -150 -150 s m -200 -150 -100 -50 0 50 100 150 200 -200 -150 -100 -50 0 50 100 150 200 4 a) P-Frame motion vectors ¯ ζ m b) Estimated vectors 5 c) Macroblocks: Mf Outliers Dominant estimation support D ✫ ✪ ( w i > 0 ) c) Camera Motion Identification in the Rough Indexing Paradigm – p.6/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  8. Global Motion Estimation Problem: P The global motion parameters are noisy due to jitter motions. 1 The global motion parameters have different meanings. ˆ θ j 2 Solution: s j Signifi cance test of the motion parameters: 3 Thresholding of likelihood values ¯ s m 4 ¯ ζ m 5 Mf Camera Motion Identification in the Rough Indexing Paradigm – p.7/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  9. Significance Value Computation Based on [BGG99]: P Change to another basis of elementary motion-subfi elds: 1 ˆ φ = ( pan, tilt, zoom, rot, hyp 1 , hyp 2) with θ j 2 zoom = 1 rot = 1 2 ( a 2 + a 6 ) 2 ( a 5 − a 3 ) s j hyp 1 = 1 hyp 2 = 1 2 ( a 2 − a 6 ) 2 ( a 3 + a 5 ) 3 ¯ s m Consider two hypotheses H 0 and H 1 4 H 0 : the considered component of φ is signifi cant ¯ ζ m with ˆ φ 0 as the corresponding motion model 5 H 1 : the considered component of φ is not signifi cant ( = 0 ) Mf with ˆ φ 1 as the corresponding motion model Camera Motion Identification in the Rough Indexing Paradigm – p.8/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  10. Significance Value Computation P Likelihood function associated to each hypothesis: 1 � �� 1 � − 1 f (ˆ � i Σ − 1 2( r T φ l ) = exp r i ) ˆ θ j l � 2 π det(Σ l ) 2 i ∈ D 1 s j = (2 πσ x,l σ y,l ) || D || exp ( −|| D || ) , l = 0 , 1 3 ¯ s m Assumption: � � 4 σ 2 0 x,l Σ l = ¯ ζ m σ 2 0 y,l 5 ✗ ✔ Mf covariance matrix Σ σ x , σ y variances for x and y ✖ ✕ dominant estimation support D Camera Motion Identification in the Rough Indexing Paradigm – p.9/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  11. Significance Value Computation P The signifi cance value s is: 1 � � f (ˆ φ 1 ) s = ln = || D || (ln( σ x, 0 σ y, 0 ) − ln( σ x, 1 σ y, 1 )) ˆ θ j f (ˆ φ 0 ) 2 = ∗ � ln( σ 2 0 ) − ln( σ 2 � || D || 1 ) s j 3 ∗ assuming that σ x = σ y ¯ s m 4 Aim: Use s to test the signifi cance ¯ ζ m Idea: 5 If a motion feature (pan, zoom, tilt) is present in a shot, its corresponding motion parameter is signifi cant during a suffi cient Mf number of frames. Camera Motion Identification in the Rough Indexing Paradigm – p.10/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  12. Significance Value Computation Problem: P The signifi cance values can be noisy due to jitter motions. 1 The motion models ˆ θ can be inaccurate. ˆ θ j 2 Solution: s j 3 Smooth the signifi cance value along the time and take decision on ¯ s m the temporal mean value. 4 –> Segment shots into subshots of homogeneous motion ¯ ζ m 5 Introduce confi dence measures in order to reject frames with an inaccurate motion model. Mf Camera Motion Identification in the Rough Indexing Paradigm – p.11/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  13. Significance Value Computation Two reasons for inaccurate motion models: P Failure of the MPEG encoder 1 –> Confi dence measure c D ≈ || D || ˆ θ j Failure of the global motion estimation algorithm 2 –> Confi dence measure c σ ≈ σ 2 s j 0 3 ¯ s m Reject of the frame if: c D < λ D || c σ > λ σ 4 ¯ ζ m ✎ ☞ 5 threshold λ D Mf ✍ ✌ threshold λ σ Camera Motion Identification in the Rough Indexing Paradigm – p.12/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  14. Motion Segmentation Hinkley test to detect changes on the temporal mean value ¯ s ( t ) : P Downward jump: k � � s + δ min � U k = s t − ¯ ( k ≥ 0) 1 2 ˆ t =0 θ j = 0 ≤ i ≤ k U i ; detection if M k − U k > λ H max M k 2 s j 3 Upward jump: k s m ¯ � � s − δ min � = s t − ¯ ( k ≥ 0) V k 4 2 ¯ t =0 ζ m = 0 ≤ i ≤ k V i ; detection if V k − N k > λ H min N k 5 ✗ ✔ Mf temporal mean value ¯ s minimal jump magnitude δ min ✖ ✕ predefi ned threshold λ H Camera Motion Identification in the Rough Indexing Paradigm – p.13/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  15. Motion Segmentation Principle of the Hinkely test: P 1 s and ¯ s ˆ θ j 2 s j 3 Down s m ¯ 4 M k − U k ¯ ζ m 5 Up Mf V k − N k Camera Motion Identification in the Rough Indexing Paradigm – p.14/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  16. Thresholding P Selection of the hypothesis: H 0 1 t = T 1 < ˆ � θ j s ( t ) = ¯ s ( t ) λ s T − t 0 > 2 t = t 0 H 1 s j 3 And relative thresholding to determine the dominant motion: ¯ s m 4 � ¯ s ( t ) ¯ if ¯ s ( t ) < α · min { ¯ s pan , ¯ s tilt , ¯ s zoom , ¯ s rot , ¯ s hyp 1 , ¯ s hyp 2 } ζ m ¯ ζ ( t ) = 5 0 otherwise ✗ ✔ Mf segment of homogeneous motion T − t 0 threshold λ s ✖ ✕ constant α Camera Motion Identification in the Rough Indexing Paradigm – p.15/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  17. Classification The following classifi cation scheme is applied to the thresholded mean P signifi cance values ¯ ζ = (¯ ζ pan , ¯ ζ tilt , ¯ ζ zoom , ¯ ζ rot , ¯ ζ hyp 1 , ¯ ζ hyp 2 ) : 1 ˆ ¯ motion feature θ j ζ 2 1 static camera/ no signifi cant motion (0 , 0 , 0 , 0 , 0 , 0) s j (¯ 2 pan ζ pan , 0 , 0 , 0 , 0 , 0) 3 (0 , ¯ ¯ s m 3 tilt ζ tilt , 0 , 0 , 0 , 0) 4 (¯ ζ pan , ¯ ζ tilt , ¯ 4 zoom ζ zoom , 0 , 0 , 0) ¯ ζ m 5 others complex camera motion 5 Mf Camera Motion Identification in the Rough Indexing Paradigm – p.16/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

  18. Classification Postprocessing: P Join neighbored segments with the same motion feature Reject segments with a duration shorter than t min frames 1 ˆ θ j t min t 2 s j 3 ¯ s m 4 ¯ ζ m 5 If a motion feature is still present: Mf The shot is identifi ed to contain the motion feature. Camera Motion Identification in the Rough Indexing Paradigm – p.17/21 TRECVID 2005 – P . KRÄMER and J.BENOIS-PINEAU

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend