b uchi complementation via alternating automata
play

B uchi Complementation via Alternating Automata Fabian Reiter - PowerPoint PPT Presentation

Automata Theory Seminar B uchi Complementation via Alternating Automata Fabian Reiter July 16, 2012 B uchi Complementation 2 ( n log n ) BA B BA B BA: B uchi Automaton AA: Alternating Automaton AA A AA A Expensive: If B has n


  1. Automata Theory Seminar B¨ uchi Complementation via Alternating Automata Fabian Reiter July 16, 2012

  2. B¨ uchi Complementation 2 Θ( n log n ) BA B BA B BA: B¨ uchi Automaton AA: Alternating Automaton AA A AA A Expensive: If B has n states, B has 2 Θ( n log n ) states in the worst case (Michel 1988, Safra 1988) . Complicated: Direct approaches are rather involved. Consider indirect approach: detour over alternating automata . 1 / 33

  3. Transition Modes (1) Existential : some run is accepting · · · q 0 q 1 a q 2 a q 3 a q 4 a q 5 a · · · q 0 q 1 b q 2 b q 3 b q 4 b q 5 b q 0 q 1 c q 2 c q 3 c q 4 c q 5 c · · · · · · q 0 q 1 d q 2 d q 3 d q 4 d q 5 d q 0 q 1 e q 2 e q 3 e q 4 e q 5 e · · · Universal : every run is accepting · · · q 0 q 1 a q 2 a q 3 a q 4 a q 5 a q 0 q 1 b q 2 b q 3 b q 4 b q 5 b · · · · · · q 0 q 1 c q 2 c q 3 c q 4 c q 5 c · · · q 0 q 1 d q 2 d q 3 d q 4 d q 5 d q 0 q 1 e q 2 e q 3 e q 4 e q 5 e · · · 2 / 33

  4. Transition Modes (2) Alternating : in some set of runs every run is accepting · · · q 0 q 1 a q 2 a q 3 a q 4 a q 5 a q 0 q 1 b q 2 b q 3 b q 4 b q 5 b · · · q 0 q 1 c q 2 c q 3 c q 4 c q 5 c · · · · · · q 0 q 1 d q 2 d q 3 d q 4 d q 5 d · · · q 0 q 1 e q 2 e q 3 e q 4 e q 5 e · · · q 0 q 1 f q 2 f q 3 f q 4 f q 5 f · · · q 0 q 1 g q 2 g q 3 g q 4 g q 5 g · · · q 0 q 1 h q 2 h q 3 h q 4 h q 5 h · · · q 0 q 1 i q 2 i q 3 i q 4 i q 5 i 3 / 33

  5. Alternation and Complementation Special case: A in existential mode A accepts iff ∃ run ρ : ρ fulfills acceptance condition of A A accepts iff ∀ run ρ : ¬ ( ρ fulfills acceptance condition of A ) iff ∀ run ρ : ρ fulfills dual acceptance condition of A ⇒ complementation � = dualization of: transition mode acceptance condition Want acceptance condition that is closed under dualization . 4 / 33

  6. Outline Weak Alternating Parity Automata 1 Infinite Parity Games 2 Proof of the Complementation Theorem 3 B¨ uchi Complementation Algorithm 4 5 / 33

  7. Outline Weak Alternating Parity Automata 1 Definitions and Examples Dual Automaton Infinite Parity Games 2 Proof of the Complementation Theorem 3 B¨ uchi Complementation Algorithm 4 6 / 33

  8. Preview Example ( ( b ∗ a ) ω ) B¨ uchi automaton B : b a a q 0 q 1 b Equivalent WAPA A : a , b a b b q 0 q 1 a q 2 • 2 1 0 7 / 33

  9. Weak Alternating Parity Automaton � Definition (Weak Alternating Parity Automaton) A weak alternating parity automaton (WAPA) is a tuple A := � Q , Σ , δ, q in , π � where Q finite set of states Σ finite alphabet δ : Q × Σ → B + ( Q ) transition function q in initial state π : Q → N parity function (Thomas and L¨ oding, ∼ 2000) B + ( Q ): set of all positive Boolean formulae over Q (built only from elements in Q ∪ {∧ , ∨ , ⊤ , ⊥} ) 8 / 33

  10. Transitions � Example ( a ω ) a a a q 1 δ : Q × Σ → B + ( Q ) • • 1 � q 0 , a � �→ q 0 ∨ ( q 1 ∧ q 2 ) q 0 • a � q 1 , a � �→ ( q 0 ∧ q 1 ) ∨ ( q 1 ∧ q 2 ) 2 q 2 � q 2 , a � �→ q 2 a 0 Definition (Minimal Models) Example Mod ↓ ( θ ) ⊆ 2 Q : set of minimal models Mod ↓ ( q 0 ∨ ( q 1 ∧ q 2 )) of θ ∈ B + ( Q ), i.e. the set of minimal = {{ q 0 } , { q 1 , q 2 }} subsets M ⊆ Q s.t. θ is satisfied by � if q ∈ M true q �→ false otherwise 9 / 33

  11. � Run Graph (1) Example ( a ω ) a a a q 1 • • 1 q 0 • 2 a q 2 a 0 Accepting run: q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 · · · Rejecting run: q 0 , 0 q 0 , 1 q 0 , 4 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 · · · 10 / 33

  12. � Run Graph (2) Definition (Run) A run of a WAPA A = � Q , Σ , δ, q in , π � on a word a 0 a 1 a 2 . . . ∈ Σ ω is a directed acyclic graph R := � V , E � where V ⊆ Q × N with � q in , 0 � ∈ V V contains only vertices reachable from � q in , 0 � . � � � p , i � , � q , i + 1 � E contains only edges of the form . For every vertex � p , i � ∈ V the set of successors is a minimal model of δ ( p , a i ) � � � � q ∈ Q | � p , i � , � q , i + 1 � ∈ E ∈ Mod ↓ ( δ ( p , a i )) 11 / 33

  13. Acceptance � Definition (Acceptance) Let A be a WAPA, w ∈ Σ ω and R = � V , E � a run of A on w . An infinite path ρ in R satisfies the acceptance condition of A iff the smallest occurring parity is even, i.e. min { π ( q ) | ∃ i ∈ N : � q , i � occurs in ρ } is even. R is an accepting run iff every infinite path ρ in R satisfies the acceptance condition. A accepts w iff there is some accepting run of A on w . 12 / 33

  14. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 Run on ( ba ) ω : b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  15. � Dual Automaton (1) Definition (Dual Automaton) The dual of a WAPA A = � Q , Σ , δ, q in , π � is A := � Q , Σ , δ, q in , π � where δ ( q , a ) is obtained from δ ( q , a ) by exchanging ∧ , ∨ and ⊤ , ⊥ π ( q ) := π ( q ) + 1 for all q ∈ Q and a ∈ Σ 14 / 33

  16. Dual Automaton (2) Example ( ( b ∗ a ) ω ) WAPA A : δ ( q 0 , a ) = q 0 δ ( q 0 , b ) = q 0 ∧ q 1 a , b a b δ ( q 1 , a ) = q 2 b δ ( q 1 , b ) = q 1 q 0 q 1 q 2 a • 2 1 0 δ ( q 2 , a ) = q 2 δ ( q 2 , b ) = q 2 Dual A : δ ( q 0 , a ) = q 0 δ ( q 0 , b ) = q 0 ∨ q 1 a , b a , b b δ ( q 1 , a ) = q 2 δ ( q 1 , b ) = q 1 q 0 b q 1 a q 2 3 2 1 δ ( q 2 , a ) = q 2 δ ( q 2 , b ) = q 2 15 / 33

  17. Complementation Theorem Main statement of this talk: Theorem (Complementation) The dual A of a WAPA A accepts its complement, i.e. L ( A ) = Σ ω \ L ( A ) (Thomas and L¨ oding, ∼ 2000) 16 / 33

  18. Outline Weak Alternating Parity Automata 1 Infinite Parity Games 2 Proof of the Complementation Theorem 3 B¨ uchi Complementation Algorithm 4 17 / 33

  19. Automaton vs. Pathfinder c b a player A player P find accepting run R find rejecting path in R 18 / 33

  20. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  21. � Infinite Parity Game (2) Definition (Game) A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph G A , w := � V A ˙ ∪ V P , E � where V A := Q × N (decision nodes of player A ) V P := 2 Q × N (decision nodes of player P ) E ⊆ ( V A × V P ) ∪ ( V P × V A ) s.t. the only contained edges are • � � � q , i � , � M , i � M ∈ Mod ↓ ( δ ( q , a i )) iff • � � � M , i � , � q , i + 1 � iff q ∈ M for q ∈ Q , M ⊆ Q , i ∈ N (Thomas and L¨ oding, ∼ 2000) 20 / 33

  22. Playing a Game � Definition (Play) A play γ in a game G A , w is an infinite path starting with � q in , 0 � . Definition (Winner) The winner of a play γ is player A iff the smallest parity of occurring V A -nodes is even player P · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · odd X ∈ { A , P } : a player, X : its opponent Definition (Strategy) A strategy f X : V X → V X for player X selects for every decision node of player X one of its successor nodes in G A , w . f X is a winning strategy iff player X wins every play γ that is played according to f X . 21 / 33

  23. Strategies Example Winning strategy for player A (so far): parities q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · q 0 �→ 2 { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · q 1 �→ 1 { q 1 , q 2 } , 0 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · q 2 �→ 0 Not a winning strategy for player A : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · { q 1 , q 2 } , 0 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · 22 / 33

  24. Outline 1 Weak Alternating Parity Automata Infinite Parity Games 2 Proof of the Complementation Theorem 3 Lemma 1 Lemma 2 Lemma 3 Sublemma Putting it All Together B¨ uchi Complementation Algorithm 4 23 / 33

  25. Lemma 1 Let A be a WAPA and w ∈ Σ ω . Lemma 1 Player A has a winning strategy in G A , w iff A accepts w . Explanation (oral) : Player A wins every play γ There is a run graph R in which played according to f A . every path ρ is accepting. G A , w : · · · q , i + 1 q , i + 1 { q , q ′ , q ′′ } , i q ′ , i + 1 q ′ , i + 1 p , i p , i R : · · · q ′′ , i + 1 q ′′ , i + 1 24 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend