b uchi complementation via alternating automata
play

B uchi Complementation via Alternating Automata Fabian Reiter - PowerPoint PPT Presentation

Automata Theory Seminar B uchi Complementation via Alternating Automata Fabian Reiter July 16, 2012 B uchi Complementation BA B BA B BA: B uchi Automaton 1 / 33 B uchi Complementation 2 ( n log n ) BA B BA B BA: B uchi


  1. � Run Graph (2) Definition (Run) A run of a WAPA A = � Q , Σ , δ, q in , π � on a word a 0 a 1 a 2 . . . ∈ Σ ω is a directed acyclic graph R := � V , E � where V ⊆ Q × N with � q in , 0 � ∈ V V contains only vertices reachable from � q in , 0 � . 11 / 33

  2. � Run Graph (2) Definition (Run) A run of a WAPA A = � Q , Σ , δ, q in , π � on a word a 0 a 1 a 2 . . . ∈ Σ ω is a directed acyclic graph R := � V , E � where V ⊆ Q × N with � q in , 0 � ∈ V V contains only vertices reachable from � q in , 0 � . � � � p , i � , � q , i + 1 � E contains only edges of the form . 11 / 33

  3. � Run Graph (2) Definition (Run) A run of a WAPA A = � Q , Σ , δ, q in , π � on a word a 0 a 1 a 2 . . . ∈ Σ ω is a directed acyclic graph R := � V , E � where V ⊆ Q × N with � q in , 0 � ∈ V V contains only vertices reachable from � q in , 0 � . � � � p , i � , � q , i + 1 � E contains only edges of the form . For every vertex � p , i � ∈ V the set of successors is a minimal model of δ ( p , a i ) � � � � q ∈ Q | � p , i � , � q , i + 1 � ∈ E ∈ Mod ↓ ( δ ( p , a i )) 11 / 33

  4. Acceptance � Definition (Acceptance) Let A be a WAPA, w ∈ Σ ω and R = � V , E � a run of A on w . An infinite path ρ in R satisfies the acceptance condition of A iff the smallest occurring parity is even, i.e. min { π ( q ) | ∃ i ∈ N : � q , i � occurs in ρ } is even. 12 / 33

  5. Acceptance � Definition (Acceptance) Let A be a WAPA, w ∈ Σ ω and R = � V , E � a run of A on w . An infinite path ρ in R satisfies the acceptance condition of A iff the smallest occurring parity is even, i.e. min { π ( q ) | ∃ i ∈ N : � q , i � occurs in ρ } is even. R is an accepting run iff every infinite path ρ in R satisfies the acceptance condition. 12 / 33

  6. Acceptance � Definition (Acceptance) Let A be a WAPA, w ∈ Σ ω and R = � V , E � a run of A on w . An infinite path ρ in R satisfies the acceptance condition of A iff the smallest occurring parity is even, i.e. min { π ( q ) | ∃ i ∈ N : � q , i � occurs in ρ } is even. R is an accepting run iff every infinite path ρ in R satisfies the acceptance condition. A accepts w iff there is some accepting run of A on w . 12 / 33

  7. Acceptance � Example ( a ω ) a a a q 1 • • 1 q 0 • 2 a q 2 a 0 q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 · · · q 0 , 0 q 0 , 1 q 0 , 4 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 · · · 12 / 33

  8. Acceptance � Example ( a ω ) a a a q 1 • • 1 q 0 • 2 a q 2 a 0 Accepting run: q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 · · · q 0 , 0 q 0 , 1 q 0 , 4 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 · · · 12 / 33

  9. Acceptance � Example ( a ω ) a a a q 1 • • 1 q 0 • 2 a q 2 a 0 Accepting run: q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 · · · Rejecting run: q 0 , 0 q 0 , 1 q 0 , 4 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 · · · 12 / 33

  10. Acceptance Alternating : in some set of runs every run is accepting · · · q 0 q 1 a q 2 a q 3 a q 4 a q 5 a q 0 q 1 b q 2 b q 3 b q 4 b q 5 b · · · q 0 q 1 c q 2 c q 3 c q 4 c q 5 c · · · · · · q 0 q 1 d q 2 d q 3 d q 4 d q 5 d · · · q 0 q 1 e q 2 e q 3 e q 4 e q 5 e · · · q 0 q 1 f q 2 f q 3 f q 4 f q 5 f · · · q 0 q 1 g q 2 g q 3 g q 4 g q 5 g · · · q 0 q 1 h q 2 h q 3 h q 4 h q 5 h · · · q 0 q 1 i q 2 i q 3 i q 4 i q 5 i 12 / 33

  11. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  12. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  13. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  14. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  15. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  16. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 Run on ( ba ) ω : b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  17. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 Run on ( ba ) ω : b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  18. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 Run on ( ba ) ω : b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  19. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 Run on ( ba ) ω : b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  20. Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b b q 0 q 1 q 2 a • 2 1 0 Run on b ω : b b b b b b b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 Run on ( ba ) ω : b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 · · · 13 / 33

  21. � Dual Automaton (1) Definition (Dual Automaton) The dual of a WAPA A = � Q , Σ , δ, q in , π � is A := � Q , Σ , δ, q in , π � 14 / 33

  22. � Dual Automaton (1) Definition (Dual Automaton) The dual of a WAPA A = � Q , Σ , δ, q in , π � is A := � Q , Σ , δ, q in , π � where δ ( q , a ) is obtained from δ ( q , a ) by exchanging ∧ , ∨ and ⊤ , ⊥ for all q ∈ Q and a ∈ Σ 14 / 33

  23. � Dual Automaton (1) Definition (Dual Automaton) The dual of a WAPA A = � Q , Σ , δ, q in , π � is A := � Q , Σ , δ, q in , π � where δ ( q , a ) is obtained from δ ( q , a ) by exchanging ∧ , ∨ and ⊤ , ⊥ π ( q ) := π ( q ) + 1 for all q ∈ Q and a ∈ Σ 14 / 33

  24. Dual Automaton (2) Example ( ( b ∗ a ) ω ) WAPA A : δ ( q 0 , a ) = q 0 δ ( q 0 , b ) = q 0 ∧ q 1 a , b a b δ ( q 1 , a ) = q 2 b δ ( q 1 , b ) = q 1 q 0 q 1 q 2 a • 2 1 0 δ ( q 2 , a ) = q 2 δ ( q 2 , b ) = q 2 15 / 33

  25. Dual Automaton (2) Example ( ( b ∗ a ) ω ) WAPA A : δ ( q 0 , a ) = q 0 δ ( q 0 , b ) = q 0 ∧ q 1 a , b a b δ ( q 1 , a ) = q 2 b δ ( q 1 , b ) = q 1 q 0 q 1 q 2 a • 2 1 0 δ ( q 2 , a ) = q 2 δ ( q 2 , b ) = q 2 Dual A : δ ( q 0 , a ) = q 0 δ ( q 0 , b ) = q 0 ∨ q 1 a , b a , b b δ ( q 1 , a ) = q 2 δ ( q 1 , b ) = q 1 q 0 b q 1 a q 2 3 2 1 δ ( q 2 , a ) = q 2 δ ( q 2 , b ) = q 2 15 / 33

  26. Complementation Theorem Main statement of this talk: Theorem (Complementation) The dual A of a WAPA A accepts its complement, i.e. L ( A ) = Σ ω \ L ( A ) (Thomas and L¨ oding, ∼ 2000) 16 / 33

  27. Outline Weak Alternating Parity Automata 1 Infinite Parity Games 2 Proof of the Complementation Theorem 3 B¨ uchi Complementation Algorithm 4 17 / 33

  28. c b a Automaton vs. Pathfinder 18 / 33

  29. Automaton vs. Pathfinder c b a player A 18 / 33

  30. Automaton vs. Pathfinder c b a player A find accepting run R 18 / 33

  31. Automaton vs. Pathfinder c b a player A player P find accepting run R 18 / 33

  32. Automaton vs. Pathfinder c b a player A player P find accepting run R find rejecting path in R 18 / 33

  33. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 19 / 33

  34. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  35. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  36. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  37. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  38. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  39. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  40. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  41. � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 q 0 • w = a ω A : 2 a q 2 a 0 Game G A , w : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 19 / 33

  42. � Infinite Parity Game (2) Definition (Game) A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph G A , w := � V A ˙ ∪ V P , E � (Thomas and L¨ oding, ∼ 2000) 20 / 33

  43. � Infinite Parity Game (2) Definition (Game) A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph G A , w := � V A ˙ ∪ V P , E � where V A := Q × N (decision nodes of player A ) (Thomas and L¨ oding, ∼ 2000) 20 / 33

  44. � Infinite Parity Game (2) Definition (Game) A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph G A , w := � V A ˙ ∪ V P , E � where V A := Q × N (decision nodes of player A ) V P := 2 Q × N (decision nodes of player P ) (Thomas and L¨ oding, ∼ 2000) 20 / 33

  45. � Infinite Parity Game (2) Definition (Game) A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph G A , w := � V A ˙ ∪ V P , E � where V A := Q × N (decision nodes of player A ) V P := 2 Q × N (decision nodes of player P ) E ⊆ ( V A × V P ) ∪ ( V P × V A ) (Thomas and L¨ oding, ∼ 2000) 20 / 33

  46. � Infinite Parity Game (2) Definition (Game) A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph G A , w := � V A ˙ ∪ V P , E � where V A := Q × N (decision nodes of player A ) V P := 2 Q × N (decision nodes of player P ) E ⊆ ( V A × V P ) ∪ ( V P × V A ) s.t. the only contained edges are • � � � q , i � , � M , i � M ∈ Mod ↓ ( δ ( q , a i )) iff for q ∈ Q , M ⊆ Q , i ∈ N (Thomas and L¨ oding, ∼ 2000) 20 / 33

  47. � Infinite Parity Game (2) Definition (Game) A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph G A , w := � V A ˙ ∪ V P , E � where V A := Q × N (decision nodes of player A ) V P := 2 Q × N (decision nodes of player P ) E ⊆ ( V A × V P ) ∪ ( V P × V A ) s.t. the only contained edges are • � � � q , i � , � M , i � M ∈ Mod ↓ ( δ ( q , a i )) iff • � � � M , i � , � q , i + 1 � iff q ∈ M for q ∈ Q , M ⊆ Q , i ∈ N (Thomas and L¨ oding, ∼ 2000) 20 / 33

  48. Playing a Game � Definition (Play) A play γ in a game G A , w is an infinite path starting with � q in , 0 � . Example q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 21 / 33

  49. Playing a Game � Definition (Play) A play γ in a game G A , w is an infinite path starting with � q in , 0 � . Definition (Winner) The winner of a play γ is player A iff the smallest parity of occurring V A -nodes is even player P · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · odd Example q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · { q 1 , q 2 } , 0 · · · q 2 , 1 { q 2 } , 1 q 2 , 2 21 / 33

  50. Playing a Game � Definition (Play) A play γ in a game G A , w is an infinite path starting with � q in , 0 � . Definition (Winner) The winner of a play γ is player A iff the smallest parity of occurring V A -nodes is even player P · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · odd X ∈ { A , P } : a player, X : its opponent Definition (Strategy) A strategy f X : V X → V X for player X selects for every decision node of player X one of its successor nodes in G A , w . 21 / 33

  51. Playing a Game � Definition (Play) A play γ in a game G A , w is an infinite path starting with � q in , 0 � . Definition (Winner) The winner of a play γ is player A iff the smallest parity of occurring V A -nodes is even player P · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · odd X ∈ { A , P } : a player, X : its opponent Definition (Strategy) A strategy f X : V X → V X for player X selects for every decision node of player X one of its successor nodes in G A , w . f X is a winning strategy iff player X wins every play γ that is played according to f X . 21 / 33

  52. Strategies Example parities q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · q 0 �→ 2 { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · q 1 �→ 1 { q 1 , q 2 } , 0 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · q 2 �→ 0 22 / 33

  53. Strategies Example Winning strategy for player A (so far): parities q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · q 0 �→ 2 { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · q 1 �→ 1 { q 1 , q 2 } , 0 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · q 2 �→ 0 22 / 33

  54. Strategies Example Winning strategy for player A (so far): parities q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · q 0 �→ 2 { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · q 1 �→ 1 { q 1 , q 2 } , 0 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · q 2 �→ 0 Not a winning strategy for player A : q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · { q 1 , q 2 } , 0 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · 22 / 33

  55. Outline 1 Weak Alternating Parity Automata Infinite Parity Games 2 Proof of the Complementation Theorem 3 Lemma 1 Lemma 2 Lemma 3 Sublemma Putting it All Together B¨ uchi Complementation Algorithm 4 23 / 33

  56. Lemma 1 Let A be a WAPA and w ∈ Σ ω . Lemma 1 Player A has a winning strategy in G A , w iff A accepts w . 24 / 33

  57. Lemma 1 Let A be a WAPA and w ∈ Σ ω . Lemma 1 Player A has a winning strategy in G A , w iff A accepts w . Explanation (oral) : Player A wins every play γ played according to f A . G A , w : · · · q , i + 1 { q , q ′ , q ′′ } , i q ′ , i + 1 p , i · · · q ′′ , i + 1 24 / 33

  58. Lemma 1 Let A be a WAPA and w ∈ Σ ω . Lemma 1 Player A has a winning strategy in G A , w iff A accepts w . Explanation (oral) : Player A wins every play γ There is a run graph R in which played according to f A . every path ρ is accepting. G A , w : · · · q , i + 1 q , i + 1 { q , q ′ , q ′′ } , i q ′ , i + 1 q ′ , i + 1 p , i p , i R : · · · q ′′ , i + 1 q ′′ , i + 1 24 / 33

  59. Lemma 2 Let A be a WAPA and w ∈ Σ ω . Lemma 2 Player P has a winning strategy in G A , w iff A does not accept w . (pointed out by Jan Leike) 25 / 33

  60. Lemma 2 Let A be a WAPA and w ∈ Σ ω . Lemma 2 Player P has a winning strategy in G A , w iff A does not accept w . (pointed out by Jan Leike) Explanation (oral) : Player P wins every play γ played according to f P . · · · G A , w : { .., q , .. } , i q , i + 1 · · · · · · { .., q ′ , .. } , i q ′ , i + 1 p , i · · · · · · { .., q ′′ , .. } , i q ′′ , i + 1 · · · 25 / 33

  61. Lemma 2 Let A be a WAPA and w ∈ Σ ω . Lemma 2 Player P has a winning strategy in G A , w iff A does not accept w . (pointed out by Jan Leike) Explanation (oral) : Player P wins every play γ Every run graph R contains a played according to f P . rejecting path ρ . · · · · · · G A , w : { .., q , .. } , i p , i q , i + 1 q , i + 1 R : · · · · · · · · · · · · { .., q ′ , .. } , i q ′ , i + 1 q ′ , i + 1 p , i R ′ : p , i · · · · · · · · · · · · q ′′ , i + 1 R ′′ : p , i { .., q ′′ , .. } , i q ′′ , i + 1 · · · · · · 25 / 33

  62. Sublemma � Let θ ∈ B + ( Q ) be a formula over Q . Sublemma S ⊆ Q is a model of θ for all M ∈ Mod ↓ ( θ ): S ∩ M � = ∅ . iff 26 / 33

  63. Sublemma � Let θ ∈ B + ( Q ) be a formula over Q . Sublemma S ⊆ Q is a model of θ for all M ∈ Mod ↓ ( θ ): S ∩ M � = ∅ . iff Proof: W.l.o.g. θ is in DNF, i.e. � � θ = q M ∈ Mod ↓ ( θ ) q ∈ M 26 / 33

  64. Sublemma � Let θ ∈ B + ( Q ) be a formula over Q . Sublemma S ⊆ Q is a model of θ for all M ∈ Mod ↓ ( θ ): S ∩ M � = ∅ . iff Proof: W.l.o.g. θ is in DNF, i.e. � � θ = q M ∈ Mod ↓ ( θ ) q ∈ M Then θ is in CNF, i.e. � � θ = q M ∈ Mod ↓ ( θ ) q ∈ M 26 / 33

  65. Sublemma � Let θ ∈ B + ( Q ) be a formula over Q . Sublemma S ⊆ Q is a model of θ for all M ∈ Mod ↓ ( θ ): S ∩ M � = ∅ . iff Proof: W.l.o.g. θ is in DNF, i.e. � � θ = q M ∈ Mod ↓ ( θ ) q ∈ M Then θ is in CNF, i.e. � � θ = q M ∈ Mod ↓ ( θ ) q ∈ M Thus S ⊆ Q is a model of θ iff it contains at least one element from each disjunct of θ . 26 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend