overview word systems
play

Overview Word Systems Regular expressiveness Linear temporal logic - PowerPoint PPT Presentation

ormal ethods roup Linear Temporal Logics and Grammars Joachim Baran The University of Manchester April 2006 Overview Word Systems Regular expressiveness Linear temporal logic B uchi-automata Right-linear grammars TL,


  1. φ ormal µ ethods γ roup Linear Temporal Logics and Grammars Joachim Baran The University of Manchester April 2006

  2. Overview – Word Systems Regular expressiveness Linear temporal logic B¨ uchi-automata Right-linear grammars ν TL, QPTL, ETL, . . . over infinite words over infinite words

  3. Overview – Word Systems Regular expressiveness Linear temporal logic B¨ uchi-automata Right-linear grammars ν TL, QPTL, ETL, . . . over infinite words over infinite words Beyond context-free expressiveness Linear temporal logic Alternating + context-free grammars chop/concatenation over finite/infinite words LFLC

  4. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν

  5. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν

  6. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν

  7. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = p Models: p

  8. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = p ; q ; p ; q Models: p q p q

  9. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = p ; q ; p ; q Models: � p q p q

  10. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = p ; q ; p ; q Models: � p q p q

  11. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = p ; q ; p ; q Models: � p q p q

  12. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = p ; q ; p ; q Models: p � p q q

  13. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = ν X . ( p ; q ; X ) Models: p q p q p q p q p q . . .

  14. Temporal Logic Linear-time temporal logic with chop (LFLC): • propositional constants p , q , . . . p ≡ {¬ a , ¬ b } • special “empty” proposition ε q ≡ {¬ a , b } • connectives ∨ , ∧ ≡ { a , ¬ b } r • concatenation ; ≡ { a , b } s • fixed-point variables X , Y , . . . • fixed-point operators µ, ν M | = p ∨ p ; q ; p ; q ∨ ν X . ( p ; q ; X ) Models: p p q p q p q p q p q p q p q . . .

  15. Grammars Alternating Context-Free Grammar (ACFG): • terminals p , q , . . . ∈ Σ X → pq • non-terminals X , Y , . . . ∈ N N → ( N ∪ Σ) ∗ • production rules X → pYq • designated initial symbol S ∈ N X → ε • alternation function λ : N → {∀ , ∃} • parity function Ω : N → N

  16. Grammars Alternating Context-Free Grammar (ACFG): • terminals p , q , . . . ∈ Σ X → pq • non-terminals X , Y , . . . ∈ N N → ( N ∪ Σ) ∗ • production rules X → pYq • designated initial symbol S ∈ N X → ε • alternation function λ : N → {∀ , ∃} • parity function Ω : N → N

  17. Grammars Alternating Context-Free Grammar (ACFG): • terminals p , q , . . . ∈ Σ X → pq • non-terminals X , Y , . . . ∈ N N → ( N ∪ Σ) ∗ • production rules X → pYq • designated initial symbol S ∈ N X → ε • alternation function λ : N → {∀ , ∃} • parity function Ω : N → N

  18. Grammars Alternating Context-Free Grammar (ACFG): • terminals p , q , . . . ∈ Σ X → pq • non-terminals X , Y , . . . ∈ N N → ( N ∪ Σ) ∗ • production rules X → pYq • designated initial symbol S ∈ N X → ε • alternation function λ : N → {∀ , ∃} • parity function Ω : N → N Languages: � � S → p L p Ω( S ) = 0

  19. Grammars Alternating Context-Free Grammar (ACFG): • terminals p , q , . . . ∈ Σ X → pq • non-terminals X , Y , . . . ∈ N N → ( N ∪ Σ) ∗ • production rules X → pYq • designated initial symbol S ∈ N X → ε • alternation function λ : N → {∀ , ∃} • parity function Ω : N → N Languages: � � S → pqpq L Ω( S ) = 0 p q p q

  20. Grammars Alternating Context-Free Grammar (ACFG): • terminals p , q , . . . ∈ Σ X → pq • non-terminals X , Y , . . . ∈ N N → ( N ∪ Σ) ∗ • production rules X → pYq • designated initial symbol S ∈ N X → ε • alternation function λ : N → {∀ , ∃} • parity function Ω : N → N Languages: � � S → pqS L Ω( S ) = 0 p q p q p q p q p q . . .

  21. Grammars Alternating Context-Free Grammar (ACFG): • terminals p , q , . . . ∈ Σ X → pq • non-terminals X , Y , . . . ∈ N N → ( N ∪ Σ) ∗ X → pYq • production rules • designated initial symbol S ∈ N X → ε • alternation function λ : N → {∀ , ∃} • parity function Ω : N → N   S → p | pqpq | A Languages: A → pqA p   L   λ ( S ) = λ ( A ) = ∃   p q p q Ω( S ) = Ω( A ) = 0 p q p q p q p q p q . . .

  22. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  23. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  24. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  25. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  26. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  27. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  28. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  29. Relationship of LFLC and ACFGs � � S → aS | b µ X . ( a ; X ∨ b ) L Ω( S ) = 1 µ X . ( a ; X ∨ b ) S a ; X ∨ b aS a a X S µ X . ( a ; X ∨ b ) | a ; X ∨ b aS a a X S b b

  30. Expressiveness of LFLC and ACFGs • beyond context-free expressiveness L = { a n b n c n | n ≥ 0 } • satisfiability is undecidable L = L 1 ∩ L 2 , where L 1 , L 2 are context-free due to ϕ = ϕ 1 ∧ ϕ 2 , ϕ 1 , ϕ 2 are context-free • model-checking of finite words and ultimately periodic infinite words is decidable w | = ϕ or w ∈ L ( G )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend