b uchi complementation
play

B uchi Complementation 2 ( n log n ) BA B BA B Automata Theory - PDF document

B uchi Complementation 2 ( n log n ) BA B BA B Automata Theory Seminar BA: B uchi Automaton B uchi Complementation via AA: Alternating Alternating Automata Automaton AA A AA A Fabian Reiter Expensive: If B has n states, B has 2


  1. B¨ uchi Complementation 2 Θ( n log n ) BA B BA B Automata Theory Seminar BA: B¨ uchi Automaton B¨ uchi Complementation via AA: Alternating Alternating Automata Automaton AA A AA A Fabian Reiter Expensive: If B has n states, B has 2 Θ( n log n ) states in the worst case (Michel 1988, Safra 1988) . July 16, 2012 Complicated: Direct approaches are rather involved. Consider indirect approach: detour over alternating automata . 1 / 33 Transition Modes (1) Transition Modes (2) Existential : some run is accepting Alternating : in some set of runs every run is accepting q 0 q 1 a q 2 a q 3 a q 4 a q 5 a · · · q 0 q 1 a q 2 a q 3 a q 4 a q 5 a · · · q 0 q 1 b q 2 b q 3 b q 4 b q 5 b · · · · · · q 0 q 1 b q 2 b q 3 b q 4 b q 5 b q 0 q 1 c q 2 c q 3 c q 4 c q 5 c · · · q 0 q 1 c q 2 c q 3 c q 4 c q 5 c · · · q 0 q 1 d q 2 d q 3 d q 4 d q 5 d · · · q 0 q 1 d q 2 d q 3 d q 4 d q 5 d · · · · · · q 0 q 1 e q 2 e q 3 e q 4 e q 5 e q 0 q 1 e q 2 e q 3 e q 4 e q 5 e · · · Universal : every run is accepting q 0 q 1 f q 2 f q 3 f q 4 f q 5 f · · · · · · q 0 q 1 a q 2 a q 3 a q 4 a q 5 a · · · q 0 q 1 g q 2 g q 3 g q 4 g q 5 g · · · q 0 q 1 b q 2 b q 3 b q 4 b q 5 b q 0 q 1 h q 2 h q 3 h q 4 h q 5 h · · · · · · q 0 q 1 c q 2 c q 3 c q 4 c q 5 c · · · q 0 q 1 i q 2 i q 3 i q 4 i q 5 i · · · q 0 q 1 d q 2 d q 3 d q 4 d q 5 d q 0 q 1 e q 2 e q 3 e q 4 e q 5 e · · · 2 / 33 3 / 33 Alternation and Complementation Outline Special case: A in existential mode 1 Weak Alternating Parity Automata A accepts iff ∃ run ρ : ρ fulfills acceptance condition of A Infinite Parity Games 2 A accepts iff ∀ run ρ : ¬ ( ρ fulfills acceptance condition of A ) iff ∀ run ρ : ρ fulfills dual acceptance condition of A 3 Proof of the Complementation Theorem ⇒ complementation � = dualization of: B¨ uchi Complementation Algorithm 4 transition mode acceptance condition Want acceptance condition that is closed under dualization . 4 / 33 5 / 33 Preview Outline Example ( ( b ∗ a ) ω ) 1 Weak Alternating Parity Automata B¨ uchi automaton B : Definitions and Examples b a Dual Automaton a q 0 q 1 2 Infinite Parity Games b Proof of the Complementation Theorem Equivalent WAPA A : 3 a , b a b 4 B¨ uchi Complementation Algorithm b q 0 q 1 a q 2 • 2 1 0 6 / 33 7 / 33

  2. Weak Alternating Parity Automaton � Transitions � Example ( a ω ) Definition (Weak Alternating Parity Automaton) a a a A weak alternating parity automaton (WAPA) is a tuple q 1 • • δ : Q × Σ → B + ( Q ) 1 A := � Q , Σ , δ, q in , π � � q 0 , a � �→ q 0 ∨ ( q 1 ∧ q 2 ) q 0 • where 2 a � q 1 , a � �→ ( q 0 ∧ q 1 ) ∨ ( q 1 ∧ q 2 ) Q finite set of states q 2 � q 2 , a � �→ q 2 a 0 Σ finite alphabet δ : Q × Σ → B + ( Q ) transition function Definition (Minimal Models) Example q in initial state Mod ↓ ( θ ) ⊆ 2 Q : set of minimal models π : Q → N parity function Mod ↓ ( q 0 ∨ ( q 1 ∧ q 2 )) of θ ∈ B + ( Q ), i.e. the set of minimal = {{ q 0 } , { q 1 , q 2 }} (Thomas and L¨ oding, ∼ 2000) subsets M ⊆ Q s.t. θ is satisfied by � B + ( Q ): set of all positive Boolean formulae over Q if q ∈ M true q �→ (built only from elements in Q ∪ {∧ , ∨ , ⊤ , ⊥} ) false otherwise 8 / 33 9 / 33 � � Run Graph (1) Run Graph (2) Example ( a ω ) Definition (Run) a a a q 1 A run of a WAPA A = � Q , Σ , δ, q in , π � on a word a 0 a 1 a 2 . . . ∈ Σ ω • • 1 is a directed acyclic graph q 0 • a 2 R := � V , E � q 2 where a 0 V ⊆ Q × N with � q in , 0 � ∈ V Accepting run: V contains only vertices reachable from � q in , 0 � . q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 · · · � � E contains only edges of the form � p , i � , � q , i + 1 � . Rejecting run: For every vertex � p , i � ∈ V the set of successors is a minimal model of δ ( p , a i ) q 0 , 0 q 0 , 1 q 0 , 4 � � � � q ∈ Q | � p , i � , � q , i + 1 � ∈ E ∈ Mod ↓ ( δ ( p , a i )) q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 · · · 10 / 33 11 / 33 Acceptance � Infinitely many a ’s Example ( ( b ∗ a ) ω ) a , b a b Definition (Acceptance) Let A be a WAPA, w ∈ Σ ω and R = � V , E � a run of A on w . b q 0 q 1 q 2 a • 2 1 0 An infinite path ρ in R satisfies the acceptance condition of A iff the smallest occurring parity is even, i.e. Run on b ω : b b b b b b b min { π ( q ) | ∃ i ∈ N : � q , i � occurs in ρ } is even. q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 2 q 1 , 3 q 1 , 4 q 1 , 5 q 1 , 6 · · · R is an accepting run iff every infinite path ρ in R satisfies the acceptance condition. Run on ( ba ) ω : A accepts w iff there is some accepting run of A on w . b a b a b a b q 0 , 0 q 0 , 1 q 0 , 2 q 0 , 3 q 0 , 4 q 0 , 5 q 0 , 6 · · · q 1 , 1 q 1 , 3 q 1 , 5 · · · · · · q 2 , 2 q 2 , 3 q 2 , 4 q 2 , 5 q 2 , 6 12 / 33 13 / 33 Dual Automaton (1) � Dual Automaton (2) Example ( ( b ∗ a ) ω ) WAPA A : δ ( q 0 , a ) = q 0 δ ( q 0 , b ) = q 0 ∧ q 1 a , b Definition (Dual Automaton) a b δ ( q 1 , a ) = q 2 The dual of a WAPA A = � Q , Σ , δ, q in , π � is b δ ( q 1 , b ) = q 1 q 0 q 1 a q 2 • 2 1 0 δ ( q 2 , a ) = q 2 A := � Q , Σ , δ, q in , π � δ ( q 2 , b ) = q 2 where δ ( q , a ) is obtained from δ ( q , a ) by exchanging ∧ , ∨ and ⊤ , ⊥ Dual A : δ ( q 0 , a ) = q 0 π ( q ) := π ( q ) + 1 δ ( q 0 , b ) = q 0 ∨ q 1 a , b a , b b for all q ∈ Q and a ∈ Σ δ ( q 1 , a ) = q 2 δ ( q 1 , b ) = q 1 q 0 b q 1 a q 2 3 2 1 δ ( q 2 , a ) = q 2 δ ( q 2 , b ) = q 2 14 / 33 15 / 33

  3. Complementation Theorem Outline Weak Alternating Parity Automata 1 Main statement of this talk: 2 Infinite Parity Games Theorem (Complementation) The dual A of a WAPA A accepts its complement, i.e. Proof of the Complementation Theorem 3 L ( A ) = Σ ω \ L ( A ) 4 B¨ uchi Complementation Algorithm (Thomas and L¨ oding, ∼ 2000) 16 / 33 17 / 33 Automaton vs. Pathfinder � Infinite Parity Game (1) Example ( a ω ) a a a q 1 • • 1 c q 0 b • w = a ω A : a 2 q 2 a 0 Game G A , w : a q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · { q 1 , q 2 } , 1 · · · q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · player A player P { q 1 , q 2 } , 0 find accepting run R find rejecting path in R q 2 , 1 { q 2 } , 1 q 2 , 2 · · · 18 / 33 19 / 33 � Playing a Game � Infinite Parity Game (2) Definition (Play) Definition (Game) A play γ in a game G A , w is an infinite path starting with � q in , 0 � . A game for a WAPA A = � Q , Σ , δ, q in , π � and w = a 0 a 1 a 2 . . . ∈ Σ ω is a directed graph Definition (Winner) The winner of a play γ is G A , w := � V A ˙ ∪ V P , E � where player A iff the smallest parity of occurring V A -nodes is even V A := Q × N (decision nodes of player A ) player P · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · odd V P := 2 Q × N (decision nodes of player P ) X ∈ { A , P } : a player, X : its opponent E ⊆ ( V A × V P ) ∪ ( V P × V A ) Definition (Strategy) s.t. the only contained edges are • � � � q , i � , � M , i � iff M ∈ Mod ↓ ( δ ( q , a i )) A strategy f X : V X → V X for player X selects for every • � � � M , i � , � q , i + 1 � iff q ∈ M decision node of player X one of its successor nodes in G A , w . for q ∈ Q , M ⊆ Q , i ∈ N f X is a winning strategy iff player X wins every play γ that is played according to f X . (Thomas and L¨ oding, ∼ 2000) 20 / 33 21 / 33 Strategies Outline Example Winning strategy for player A (so far): parities 1 Weak Alternating Parity Automata q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · q 0 �→ 2 · · · { q 1 , q 2 } , 1 Infinite Parity Games 2 q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · q 1 �→ 1 3 Proof of the Complementation Theorem { q 1 , q 2 } , 0 Lemma 1 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · q 2 �→ 0 Lemma 2 Lemma 3 Not a winning strategy for player A : Sublemma q 0 , 0 { q 0 } , 0 q 0 , 1 { q 0 } , 1 q 0 , 2 · · · Putting it All Together · · · { q 1 , q 2 } , 1 B¨ uchi Complementation Algorithm q 1 , 1 { q 0 , q 1 } , 1 q 1 , 2 · · · 4 { q 1 , q 2 } , 0 q 2 , 1 { q 2 } , 1 q 2 , 2 · · · 22 / 33 23 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend