atom to transistor 2 1 reference qtat chapter 1 cambridge
play

Atom to Transistor, 2 1 Reference: QTAT, Chapter 1. Cambridge - PowerPoint PPT Presentation

CQT Lecture #2 nano HUB .org online simulations and more Unified Model for Quantum Transport Far from Equilibrium CQT, Lecture#2: s Electrical Resistance: A Simple Model 1 2 H 1 2 Objective: To introduce a simple quantitative


  1. CQT Lecture #2 nano HUB .org online simulations and more Unified Model for Quantum Transport Far from Equilibrium CQT, Lecture#2: Σ s Electrical Resistance: A Simple Model μ 1 μ 2 H Σ 1 Σ 2 Objective: To introduce a simple quantitative model for describing current flow in nanoscale structures and relate it to Simple version Σ s well-known large scale properties like Ohm’s Law. μ 1 μ 2 D(E) D(E) Model based on “QTAT” Datta, Nanotechnology,15, S433 (2004). Datta, Quantum Transport: γ γ Atom to Transistor, 2 1 Reference: QTAT, Chapter 1. Cambridge (2005) 1 Network for Computational Nanotechnology

  2. Equilibrium Energy Level Diagram nano HUB .org online simulations and more V G < 0 <-- L --> n-type S D CHANNEL Vacuum V G > 0 V G Level I V = 0 EMPTY 0.25 0.2 f (E) 0.15 0.1 E No states 0.05 0 -0.05 -0.1 FILLED -0.15 -0.2 -0.25 -0.2 0 0.2 0.4 0.6 0.8 1 Fermi function p-type S Channel D 2 Network for Computational Nanotechnology

  3. What makes electrons flow? nano HUB .org online simulations and more S D CHANNEL S D CHANNEL V G > 0 V G V D V D I I µ1 µ1 µ2 µ2 3 Network for Computational Nanotechnology

  4. Escape rate nano HUB .org online simulations and more γ / � : Escape Rate γ has dimensions of energy γ γ � � 2 / / 1 S Channel D µ1 µ2 γ 1 Small 4 Network for Computational Nanotechnology

  5. Current through a very small conductor nano HUB .org online simulations and more S Channel D Normalized 1 Current 0.8 0.6 I V 0.4 0.2 0 V ⇒ -0.2 -0.2 0 0.2 0.4 0.6 γ γ � � 1 / / µ 2 1 µ 1 μ 2 μ 1 V 5 Network for Computational Nanotechnology

  6. What is Conductance ? nano HUB .org online simulations and more q γ 1 0.1 0.1 γ 1 / � γ � 0.08 0.08 empty / Normalized 1 1 0.06 0.06 2 � Current 0.04 0.04 μ 2 0.8 0.02 0.02 0 0 0.6 -0.02 -0.02 full -0.04 -0.04 0.4 μ 1 -0.06 -0.06 0.2 -0.08 -0.08 -0.1 -0.1 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 0 V ⇒ -0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 Normalized Conductance 0.8 γ � d I q / 2 0.6 1 ~ 0.4 d V 4 k T / q 0.2 0 -0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 6 Network for Computational Nanotechnology

  7. Conductance quantum nano HUB .org online simulations and more q γ 1 γ � γ � 1 / / Normalized 1 1 2 � Current μ 2 0.8 0.6 0.4 μ 1 0.2 0 V ⇒ -0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 γ � q / 2 d I 1 ~ γ + ( 2 4 ) / d V k T q 1 1 Normalized Conductance 0.8 q 2 /4 � 0.6 γ 1 >> k T ~ if 0.4 0.2 Conductance quantum 0 π Ω � -0.2 2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ~ q / 2 ~ 1/ 25.8 K 7 Network for Computational Nanotechnology

  8. Conductance: The bottom line nano HUB .org online simulations and more γ γ � � / / q γ µ 1 ~ I D qV � � � 2 � � D Number qV Current of states µ 2 per state 2 q = π γ I D D: Density � � � � � π V � 2 � of states Transmission Conductance Quantum 8 Network for Computational Nanotechnology

  9. Bottom to Top: A Short-cut nano HUB .org online simulations and more Cross-section A ; Length L γ γ � � / / γ γ � � / / µ1 D(E) µ2 <---- L ----> = 2 D ( E ) N ( E ) AL � q � � � � � � = π γ 0 I D 3 π V � nm / eV − 2 3 / eV nm Will show that D � � 2 v γ → γ γ → γ ~ D ~ A / L ~ D ~ A 2 L L 9 Network for Computational Nanotechnology

  10. Ballistic vs. Diffusive channels nano HUB .org online simulations and more Ballistic Diffusive γ γ γ γ <-------- L --------> <-------- L --------> n L ∂ n L n ~ ⇒ = D L ⇒ = − Flux n v Flux L ∂ x γ Flux γ = Flux = � Stored electrons � Stored electrons ν n v ~ ~ = = L D D n / L 2 = = L n L L L 2 n L / 2 L L = 1 / Transit time = 1 / Transit time 10 Network for Computational Nanotechnology

  11. Drift-diffusion equations nano HUB .org online simulations and more Diffusive transport 2 ~ q D � = γ I 2 D γ = V � 2 2 L = D N 0 AL conductivity <---- L ----> S D O q 2 N 0 ˜ D R = IV U ( A / L ) A CHANNEL R I C N E Non-degenerate V I n D → q 2 ˜ ( A / L ) k B T ~ Einstein D k B T = = q n μ Relation : ( A / L ) μ q 11 Network for Computational Nanotechnology

  12. Transmission nano HUB .org online simulations and more One broadened γ γ � � / / 0.2 level : 0.15 0.1 µ1 0.05 0 γ / π -0.05 = D ( E ) ( E − ε ) 2 + γ 2 qV -0.1 -0.15 -0.2 0.5 1 1.5 2 2.5 3 3.5 µ2 D ( E = ε ) = 1/ π γ π D γ = 1 2 q = π γ I D � � � � � π V � 2 � � �� � Transmission Conductance quantum 12 Network for Computational Nanotechnology

  13. Number of modes nano HUB .org online simulations and more Ballistic transport Electrons with effective mass ‘m’ γ = � v x / L = L ( m / π � v ) E 1 D : D π D γ = 1 D(E) 2 q = π γ I = LW m /2 π � 2 D 2 D : D � � � π V E � � 2 � � Transmissi on π D γ = W m ν x /2 � Conduc tan ce quantum W ≈ D(E) λ /2 <---- L ----> S D O R U A CHANNEL LAm 2 v /3 π 2 � 3 R I = E C 3 D : D N E V A π D γ ≈ ( λ /2) 2 I D(E) 13 Network for Computational Nanotechnology

  14. Current through one level nano HUB .org online simulations and more γ 2 / � γ � / γ = γ 1 Set : E E 2 1 0.25 0.2 1 - 0 0.25 µ1 0.15 0.2 0.1 0.15 γ 0.05 q 0.1 f − 0 0.05 1 I ~ [ f f ] -0.05 0 -0.05 -0.1 � 1 2 2 -0.1 µ2 -0.15 -0.15 -0.2 -0.2 -0.25 -0.2 0 0.2 0.4 0.6 0.8 1 -0.25 -0.2 0 0.2 0.4 0.6 0.8 1 f 2 ( E ) f 1 ( E ) γ γ [ ] [ ] γ 1 = − = 2 − 1 q I q f f I q f f 1 1 2 2 � � I ~ � 2 γ 1 γ 2 q [ ] = f 1 − f 2 I γ 1 + γ 2 � 14 Network for Computational Nanotechnology

  15. Current with Broadening nano HUB .org online simulations and more S D CHANNEL ⎡ ⎤ γ + γ f f = ∫ dE 1 1 2 2 V G ⎢ ⎥ n D ( E ) V D γ + γ ⎣ ⎦ I 1 2 γ 1 γ 2 γ 2 / � q γ [ ] ∫ dE � = f 1 − f 2 / D ( E ) I γ 1 + γ 2 1 � µ1 qV µ2 15 Network for Computational Nanotechnology

  16. Importance of electrostatics nano HUB .org online simulations and more γ 1 γ 2 γ 2 / � q γ [ ] � = f 1 − f 2 / γ 2 / � γ I � 1 / γ 1 + γ 2 � 1 μ 2 γ 2 / � γ � / 1 μ 1 μ 1 μ 2 γ 2 / � γ � / 1 μ 1 μ 2 μ 2 μ 1 1 1 1 0.8 0.8 0.8 Normalized 0.6 0.6 0.6 0.4 Current 0.4 0.4 0.2 0 0.2 0.2 0 0 0 -0.2 -0.2 -0.2 -0.4 -0.4 -0.4 -0.6 -0.6 -0.6 -0.8 -0.8 -0.8 -1 -1 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 ⇒ -1 -0.8 -0.6 -0.4 -0.2 0 0 0.2 0.4 0.6 0.8 1 ⇒ ⇒ qV qV qV D D D 16 Network for Computational Nanotechnology

  17. Why does the current in a transistor saturate ? nano HUB .org online simulations and more S D CHANNEL 6x 10 -4 V G Drain V D I current 5 Current (A) ---> 4 γ γ � � / / 3 E 2 µ1 1 qV 0 0 0.2 0.4 0.6 Voltage (V) ---> Drain voltage µ2 Band Edge D(E) 17 Network for Computational Nanotechnology

  18. Self-consistent potential nano HUB .org online simulations and more ⎡ ⎤ γ + γ f f = − 1 1 2 2 U n D ( E U ) ⎢ ⎥ γ + γ S D ⎣ ⎦ CHANNEL 1 2 γ γ V G [ ] q V D = − − 1 2 I D ( E U ) f f I 1 2 γ + γ � 1 2 Well-designed gate D(E) No gate Potential lowered due to decrease in electrons U = + − ∇ U 2 = U ( n n ) U 0 0 0 L ∇ 2 U ~ Charge Density 18 Network for Computational Nanotechnology

  19. Self-consistent field method nano HUB .org online simulations and more Simplified treatment γ 1 γ 2 of a very complicated problem “Poisson” D(E) n --> U Self- Consistent Solution U --> n = + − U U U ( n n ) L 0 0 “Schrodinger” ⎡ ⎤ γ + γ U --> I f f = − 1 1 2 2 ( ) ⎢ ⎥ n D E U γ γ + ⎣ ⎦ 1 2 Nanowires / γ γ [ ] q = − − 1 2 Nanotubes / Molecules I D ( E U ) f f 1 2 γ + γ � 1 2 19 Network for Computational Nanotechnology

  20. Modeling “demons” nano HUB .org online simulations and more γ 1 γ 2 γ s D(E) μ 1 μ 2 D(E) γ γ 1 2 = + − U U U ( n n ) γ L 0 0 [ ] = − 1 I q D ( E ) f f 1 1 � ⎡ ⎤ γ + γ f f = − γ 1 1 2 2 ( ) ⎢ ⎥ n D E U [ ] γ γ = − + 2 ⎣ ⎦ I q D ( E ) f f 1 2 2 2 � γ γ − 2 = [ ] q I I I = − − 1 2 1 I D ( E U ) f f s 1 2 γ + γ � 1 2 20 Network for Computational Nanotechnology

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend