anode performance based on high temperature proton
play

Anode performance based on high temperature proton conducting - PowerPoint PPT Presentation

Anode performance based on high temperature proton conducting electrolysers and a multitube module construction N. Baus, M. Tarach and J.M. Serra International discussion on hydrogen energy and applications November 2-4, 2016 Nantes (France)


  1. Anode performance based on high temperature proton conducting electrolysers and a multitube module construction N. Bausá, M. Tarach and J.M. Serra International discussion on hydrogen energy and applications November 2-4, 2016 Nantes (France)

  2. Outline  Introduction  Installation of the high pressure set-up  Compatibility and stability tests of the selected anode material • Under 3 bars air + H 2 O (75% steam) at 700 °C for 72 h  Symmetrical cells EIS: • LSM/BCZY27 (50/50 and 60/40 vol.%)  Study by changing pH 2 O, p O 2 and p T  Infiltrations (Pr-Ce, Pr, Ce, Zr)  Multitube module design  Conclusions 2

  3. Introduction 3

  4. Introduction  The ELECTRA project: • Scalable fabrication of tubular HTE cells with proton conducting electrolytes for production of H 2 from steam and renewable sources (solar, wind, geothermal, etc.) 4

  5. Introduction SOECs H H 2 H 2 O H O 2- H H O 2- H H 2e - H H H  Utilise steam and heat procedures H 2 O+2e -  H 2 +O 2- Hydrogen electrode  Produce wet H 2 O 2- Oxygen-ion conducting O 2- O 2-  Delamination of anode electrolyte O 2- O 2-  High operation temperatures ( >800 ° C) O 2-  O+2e - Air electrode  Technology more investigated O+O  O 2 O O 2e - O O H O 2 H H H 2 H H H H H 2e - H H PCECs H 2H + +2e -  H 2 Hydrogen electrode  Utilise steam and heat procedures H + H +  Produce dry H 2 directly H + H + H + Proton conducting H + H + electrolyte H + H +  No anode delamination H + H + H + H + H + H + H + H + H + H +  Low operation temperatures ( <700 ° C) Air electrode H2O  2H + + O 2 +2e -  Technology less investigated O H 2e - H 2 O H O 2- O  Materials still in development H O 2- H O O 2 H O 5

  6. Installation of the high pressure set up 6

  7. Installation of the high pressure set up Steam Evaporator Conditions: - High pressure (20 bar) - High temperature (500-800 °C) BPR - Utilises steam and different gases - Pellets or tubes - Dual atmosphere Manometers Reactor Saturator 7

  8. Compatibility and stability tests of the selected anode material 8

  9. Compatibility tests with BCZY27 Possible Steam Electrode material Electrolyte material Testing T, t (dry) BCZY27: BaCe 0.2 Zr 0.7 Y 0.1 O 3 1100 °C/5 h LSM: La 0.8 Sr 0.2 MnO 3 LSM: La 0.8 Sr 0.2 MnO 3 BaZrO 3 CeO 2 Stainless steal holder BCZY27+LSM * LSM I (a.u.) (log scale) * CeO 2 segregation also observed in BCZY27 after long times or higher sintering T LSM BCZY27 20 30 40 50 60 70 2 θ (º) 9

  10. Stability tests under operating conditions BCZY: BaCe 0.2 Zr 0.7 Y 0.1 O 3 BCZY after 72h at 700ºC 2 bar (75% H 2 O) I (a.u.) (log scale) BCZY27 BCZY as sintered BaZrO 3 1µm 20 30 40 50 60 70 80 90 2 θ (º) LSM: La 0.8 Sr 0.2 MnO 3 LSM LSM after 72h at 700؛C 2 bar (75% H 2 O) I (a.u.) (log scale) LSM as sintered LSM 1µm 20 30 40 50 60 70 2 θ (؛) 3 bar air + H 2 O (75% steam) at 700 °C for 72 h 10

  11. Symmetrical cells EIS 11

  12. Symmetrical cells EIS Electrolyte: BCZY27  LSM/BCZY27 Electrode : LSM/BCZY27 50 vol. % Current collector : Au  Infiltrations: 1. Pr – Ce (50 % vol.) [2M] 850 °C/2h 2. Pr [2M] 850 °C/2h 3. Ce[2M] 850 °C/2h 4. Zr [2M] 850 °C/2h Ø electrolyte = 14 mm Ø electrode = 9 mm Thickness = 1.6 mm 12

  13. Symmetrical cells EIS LSM/BCZY composite T (ºC) 800 750 700 650 600 550 500 100 LSM/BCZY27 50 vol.% 1000 LSM/BCZY27 60/40 vol.% 2 ) 10 R at 700 ºC ( Ω ·cm 2 ) 100 R p ( Ω ·cm 1 10 R p HF LF LF 0,1 1 40 45 50 0,9 1,0 1,1 1,2 1,3 % of BCZY in LSM -1 ) 1000/T (K Conditions: Total P= 3 bar Steam 75% 3 days 13

  14. LSM/BCZY study by changing steam pressure, p O 2 and p T 8E-03 pH 2 O → a) pH 2 O=1.15 bar pH 2 O=1.15 bar R ∝1/σ∝ pO -0.25 7,5E-03 pO 2 ↗ 2 Electrolyte (S/cm) p t ↗ 7E-03 σ∝ pO 2 ) 0.019 R p ( Ω ·cm 2 6,5E-03 σ R p 6E-03 HF (14-23 kHz) LF (0.9-1 Hz) 700 ؛C LF (0.3-0.2 Hz) 700 ºC BCZY27 0,01 5,5E-03 0,0 0,3 0,6 0,9 0,01 0,1 1 pO2 (bar) b) pH 2 O ↗ pO2 (bar) 8E-03 100 pO 2 → pO 2 =0.1575 bar pO 2 =0.1575 bar R ∝ 1/ σ∝ pH 2 O 0.046 7E-03 p t ↗ Electrolyte (S/cm) 6E-03 2 ) R p ( Ω ·cm 1 σ∝ pH 2 O 0.12 σ 5E-03 R p HF (8-46 kHz) LF (0.9-2 Hz) 700 ؛C 700 ºC LF (0.2-0.3 Hz) BCZY27 0,01 4E-03 0 1 2 3 4 5 1 10 pH 2 O (bar) pH 2 O (bar) 14

  15. Infiltrations in LSM/BCZY 15

  16. Symmetrical cells LSM/BCZY - Infiltrations LSM/BCZY 60/40 vol. % LSM/BCZY 50 vol. % T (ºC) T (ºC) 800 750 700 650 600 750 700 650 600 3 10 3 10 LSM/BCZY27 60/40 vol.% LSM/BCZY27 50 vol.% LSM/BCZY27 60/40 vol% Infilt. Pr-Ce LSM/BCZY27 60/40 vol% Infilt.Pr LSM/BCZY27 50 vol.% Infilt. Pr LSM/BCZY27 60/40 vol% Infilt. Zr 2 10 2 10 LSM/BCZY27 60/40 vol% Infilt. Ce 2 ) 2 ) R p ( Ω ·cm R p ( Ω ·cm 1 10 1 10 0 10 0 10 -1 10 -1 10 0,9 1 1,1 1,2 1,0 1,2 -1 ) 1000/T (K -1 ) 1000/T (K Infiltration Pr Infiltration Pr-Ce Infiltration Pr Rp = 0.33 Ω ·cm 2 at 700 °C Rp = 0.64 Ω ·cm 2 at 700 °C Rp = 0.27 Ω ·cm 2 at 700 °C Infiltration Zr Infiltration Ce Rp = 7.88 Ω ·cm 2 at 700 °C Rp = 1.04 Ω ·cm 2 at 700 °C Conditions: Total P= 3 bar Steam 75% T = 700 °C 16

  17. Bias – Infiltrations in LSM/BCZY 60/40 vol. % Infiltration Pr-Ce 850 °C in LSM/BCZY 60/40 vol. % 0,08 0,08 1mA Conditions: 0,06 0,06 MF 3mA 2 ) Total P= 3 bar 5mA 2 ) -Z'' ( Ω ·cm -Z'' ( Ω ·cm 0,04 0,04 7mA Steam 75% 9mA 0,02 0,02 HF T = 700 °C 0,00 0,00 0,0 0,1 0,2 -3 -2 -1 0 1 2 3 4 5 10 10 10 10 10 10 10 10 10 Z' ( Ω ·cm 2 ) Frequency (Hz) 1 2,0 LSM/BCZY 60/40 vol.% LSM/BCZY 60/40 Infilt. Pr-Ce_3w_Current (3bar) LSM/BCZY 60/40 vol.% Infilt. Pr-Ce LSM/BCZY 60/40 vol.% Infilt. Pr-Ce_bias_1mA 1,5 R p ( Ω ·cm 2 ) -Z'' ( Ω ·cm 2 ) 1,0 0,5 0,1 0,0 0 1 2 3 4 5 6 0,0 0,5 1,0 1,5 2,0 2 ) Z' ( Ω ·cm 2 ) i (mA·cm Bias Infilt. Pr-Ce: i = 0.63 mA/cm 2  Rp = 0.17 Ω ·cm 2 i = 5.7 mA/cm 2  Rp = 0.087 Ω ·cm 2 17

  18. Bias – Infiltrations in LSM/BCZY 60/40 vol. % Infiltration Pr 850 °C in LSM/BCZY Infiltration Zr 850 °C in LSM/BCZY 0,8 LSM/BCZY 60/40 vol.% LSM/BCZY 60/40 vol.% LSM/BCZY 60/40 vol.% Infilt. Pr LSM/BCZY 60/40 vol.% Infilt. Zr 850 ºC 6 LSM/BCZY 60/40 vol.% Infilt. Pr_bias_1mA LSM/BCZY 60/40 vol.% Infilt. Zr 850C_bias_1mA 0,6 2 ) -Z'' ( Ω ·cm 4 2 ) -Z'' ( Ω ·cm 0,4 2 0,2 0,0 0 0,0 0,2 0,4 0,6 0,8 0 2 4 6 Z' ( Ω ·cm 2 ) Z' ( Ω ·cm 2 ) Bias Infilt. Pr: Bias Infilt. Zr: i = 0.63 mA/cm 2  Rp = 0.27 Ω ·cm 2 i = 0.63 mA/cm 2  Rp = 2.53 Ω ·cm 2 i = 3.2 mA/cm 2  Rp = 0.18 Ω ·cm 2 i = 6.99 mA/cm 2  Rp = 1.01 Ω ·cm 2 Conditions: Total P= 3 bar Steam 75% T = 700 °C 18

  19. Bias – Infiltrations in LSM/BCZY 60/40 vol. % Infiltration Ce 850 °C in LSM/BCZY 3 10 LSM/BCZY 60/40 vol.% LSM/BCZY 60/40 vol.% Infilt. Ce 850 ºC LSM/BCZY 60/40 vol.% Infilt. Ce 850C_bias_1mA 8 2 LSM/BCZY 60/40 vol.% Infilt. Pr-Ce 50% 2 ) 2 ) 6 -Z'' ( Ω ·cm Rp ( Ω ·cm LSM/BCZY 60/40 vol.% Infilt. Pr LSM/BCZY 60/40 vol.% Infilt. Zr LSM/BCZY 60/40 vol.% Infilt. Ce 4 1 2 0 0 0 5 10 15 20 25 0 1 2 3 t (h) Z' ( Ω ·cm 2 ) Bias Infilt. Ce: Good stability! i = 0.63 mA/cm 2  Rp = 0.54 Ω ·cm 2 Conditions: i = 5.72 mA/cm 2  Rp = 0.05 Ω ·cm 2 Total P= 3 bar Steam 75% T = 700 °C 19

  20. Comparative infiltrations Infiltrations in LSM/BCZY 60/40 vol. % Conditions: 10 LSM/BCZY 60/40 Infilt. Pr-Ce Total P= 3 bar LSM/BCZY 60/40 Infilt. Pr Steam 75% LSM/BCZY 60/40 Infilt. Zr T = 700 °C LSM/BCZY 60/40 Infilt. Ce 1 2 ) R p ( Ω ·cm 0,1 0,01 0 1 2 3 4 5 6 2 ) i (mA·cm 20

  21. SEM micrographs of LSM/BCZY 60/40 % vol. infiltrated with Pr-Ce 50% (850 °C) Powder 850 °C Fresh sample as a layer Electrode 200 nm 10 µm 200 nm Electrode after operating conditions Electrode • Ce • Pr Electrolyte 200 nm 40 µm Good infiltration 21

  22. Multitube module 22

  23. Multitube module Multitube module achieves stable operation for H 2 O electrolysis with H 2 production of 250 L n /h using 1kW of power Working conditions:  Temperature: 700 °C  Pressure:  Total: 50 bar  Steam: 10 bar  Steam temperature: 250-300°C Temperature management system:  Cooling system allows applying low temperature gaskets  Heat recovery from cooling system  External heating system for startup Power source Electrolysis Controller Co-electrolysis H 2 Pump Evaporator Gas analyser Water Container Cooling system 23

  24. Multitube module Tube materials  Anode: LSM/BCZY or BGLC/BCZY (UiO)  Cathode: Ni-BCZY cermet  Electrolyte: BCZY Electrical energy management system:  Positive (+) current contact shared by all tubes  Negative (-) current contacts independent for each tube  One tube consists of 5 segments connected in series 24 24

  25. Multitube module Geometry optimisation:  Mechanical analysis (strength, thermal resistance)  Fluid dynamics simulation (temperature profile and speed flow) Speed profile 25

  26. Multitube module Geometry optimisation:  Mechanical analysis (strength, thermal resistance)  Fluid dynamics simulation (temperature profile and speed flow) Temperature Profile 26

  27. Multitube module Geometry optimisation:  Mechanical analysis (strength, thermal resistance)  Fluid dynamics simulation (temperature profile and speed flow) Displacement Stress 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend