an isoperimetric inequality for a nonlinear eigenvalue
play

An isoperimetric inequality for a nonlinear eigenvalue problem - PowerPoint PPT Presentation

An isoperimetric inequality for a nonlinear eigenvalue problem Gisella Croce joint work with A. Henrot and G. Pisante PICOF 12 - Ecole Polytechnique, Palaiseau Let be an open bounded subset of R N . v L p ()


  1. An isoperimetric inequality for a nonlinear eigenvalue problem Gisella Croce joint work with A. Henrot and G. Pisante PICOF ’12 - Ecole Polytechnique, Palaiseau

  2. Let Ω be an open bounded subset of R N .   �∇ v � L p (Ω) �   : v � = 0 , v ∈ W 1 , p λ p , q (Ω) := inf | v | q − 2 v = 0 (Ω) , 0 � v � L q (Ω)   Ω

  3. Let Ω be an open bounded subset of R N .   �∇ v � L p (Ω) �   : v � = 0 , v ∈ W 1 , p λ p , q (Ω) := inf | v | q − 2 v = 0 (Ω) , 0 � v � L q (Ω)   Ω Among the sets of given volume, which one minimizes λ p , q (Ω)?

  4. Let Ω be an open bounded subset of R N .   �∇ v � L p (Ω) �   : v � = 0 , v ∈ W 1 , p λ p , q (Ω) := inf | v | q − 2 v = 0 (Ω) , 0 � v � L q (Ω)   Ω Among the sets of given volume, which one minimizes λ p , q (Ω)? THEOREM (C., Henrot and Pisante, Annales de l’IHP) � 1 < q < p ∗ = Np N − p , if 1 < p < N Assume 1 < p < ∞ and . 1 < q < ∞ , if p ≥ N λ p , q (Ω) ≥ λ p , q ( B 1 ∪ B 2 ) , where B 1 and B 2 are two disjoint balls of volume | Ω | / 2.

  5. Freitas-Henrot, On the first twisted Dirichlet eigenvalue : λ 2 , 2 (Ω) Motivation: Barbosa-B´ erard, Eigenvalue and twisted eigenvalue problems, applications to cmc surfaces : second variation of constant mean curvature immersions.

  6. Freitas-Henrot, On the first twisted Dirichlet eigenvalue : λ 2 , 2 (Ω) Motivation: Barbosa-B´ erard, Eigenvalue and twisted eigenvalue problems, applications to cmc surfaces : second variation of constant mean curvature immersions. Dacorogna-Gangbo-Sub´ ıa, Sur une g´ en´ eralisation de l’in´ egalit´ e de Wirtinger : the minimizers of λ p , q (( − 1 , 1)) are odd.

  7. Freitas-Henrot, On the first twisted Dirichlet eigenvalue : λ 2 , 2 (Ω) Motivation: Barbosa-B´ erard, Eigenvalue and twisted eigenvalue problems, applications to cmc surfaces : second variation of constant mean curvature immersions. Dacorogna-Gangbo-Sub´ ıa, Sur une g´ en´ eralisation de l’in´ egalit´ e de Wirtinger : the minimizers of λ p , q (( − 1 , 1)) are odd.  1  � v ′ � L p (( − 1 , 1)) �   λ p , q : v ∈ W 1 , p | v | q − 2 v = 0 per (( − 1 , 1)):=inf per (( − 1 , 1)) , � v � L q (( − 1 , 1))   − 1 = λ p , q (( − 1 , 1))

  8. Freitas-Henrot, On the first twisted Dirichlet eigenvalue : λ 2 , 2 (Ω) Motivation: Barbosa-B´ erard, Eigenvalue and twisted eigenvalue problems, applications to cmc surfaces : second variation of constant mean curvature immersions. Dacorogna-Gangbo-Sub´ ıa, Sur une g´ en´ eralisation de l’in´ egalit´ e de Wirtinger : the minimizers of λ p , q (( − 1 , 1)) are odd.  1  � v ′ � L p (( − 1 , 1)) �   λ p , q : v ∈ W 1 , p | v | q − 2 v = 0 per (( − 1 , 1)):=inf per (( − 1 , 1)) , � v � L q (( − 1 , 1))   − 1 = λ p , q (( − 1 , 1)) [ L ( ∂ A )] 2 ≥ 4 λ p , p ′ ∀ A ⊆ R 2 per (( − 1 , 1)) | A | 1 � ( x ′ ( t ) , y ′ ( t )) � l p , if ∂ A = { ( x ( t ) , y ( t )) : t ∈ [ − 1 , 1] } � L ( ∂ A ) = − 1

  9. � | u | q − 2 u = 0 makes the problem difficult. Why? The constraint Ω

  10. � | u | q − 2 u = 0 makes the problem difficult. Why? The constraint Ω A classical example: the first eigenvalue of the laplacian Among the sets of given volume, which one minimizes � � �∇ v � L 2 (Ω) : v � = 0 , v ∈ H 1 λ (Ω) = inf 0 (Ω) ? � v � L 2 (Ω)

  11. � | u | q − 2 u = 0 makes the problem difficult. Why? The constraint Ω A classical example: the first eigenvalue of the laplacian Among the sets of given volume, which one minimizes � � �∇ v � L 2 (Ω) : v � = 0 , v ∈ H 1 λ (Ω) = inf 0 (Ω) ? � v � L 2 (Ω) The ball!

  12. Since u is positive, one has �∇ u ∗ � L 2 ( B ) �∇ u � L 2 (Ω) λ (Ω) = ≥ ≥ λ ( B ) � u ∗ � L 2 ( B ) � u � L 2 (Ω) where u ∗ is the Schwarz rearrangement of u (rearrangement of the level sets of u in balls of same volume) and B is a ball with | B | = | Ω | .

  13. Since u is positive, one has �∇ u ∗ � L 2 ( B ) �∇ u � L 2 (Ω) λ (Ω) = ≥ ≥ λ ( B ) � u ∗ � L 2 ( B ) � u � L 2 (Ω) where u ∗ is the Schwarz rearrangement of u (rearrangement of the level sets of u in balls of same volume) and B is a ball with | B | = | Ω | . For   �∇ v � L p (Ω) �   : v � = 0 , v ∈ W 1 , p | v | q − 2 v = 0 λ p , q (Ω) = inf (Ω) , 0 � v � L q (Ω)   Ω the minimizers are forced to change sign, because of the constraint!

  14. IDEA OF THE PROOF OF OUR RESULT: 1. Let u be a minimizer and Ω ± = { u ≷ 0 } . Let B ± be two balls such that | B ± | = | Ω ± | . Then λ p , q (Ω) ≥ λ p , q ( B + ∪ B − ) We reduce to Ω = B 1 ∪ B 2 , | B 1 ∪ B 2 | fixed; u radial on B 1 and B 2

  15. IDEA OF THE PROOF OF OUR RESULT: 1. Let u be a minimizer and Ω ± = { u ≷ 0 } . Let B ± be two balls such that | B ± | = | Ω ± | . Then λ p , q (Ω) ≥ λ p , q ( B + ∪ B − ) We reduce to Ω = B 1 ∪ B 2 , | B 1 ∪ B 2 | fixed; u radial on B 1 and B 2 2. u solves − div ( |∇ u | p − 2 ∇ u ) = [ λ p , q (Ω)] p � u � p − q L q (Ω) | u | q − 2 u p − 1 p − 1 � � � � ∂ u 1 ∂ u 2 � � � � = ⇒ | ∂ B 1 | = | ∂ B 2 | � � � � ∂ν 1 ∂ν 2 � � � �

  16. IDEA OF THE PROOF OF OUR RESULT: 1. Let u be a minimizer and Ω ± = { u ≷ 0 } . Let B ± be two balls such that | B ± | = | Ω ± | . Then λ p , q (Ω) ≥ λ p , q ( B + ∪ B − ) We reduce to Ω = B 1 ∪ B 2 , | B 1 ∪ B 2 | fixed; u radial on B 1 and B 2 2. u solves − div ( |∇ u | p − 2 ∇ u ) = [ λ p , q (Ω)] p � u � p − q L q (Ω) | u | q − 2 u p − 1 p − 1 � � � � ∂ u 1 ∂ u 2 � � � � = ⇒ | ∂ B 1 | = | ∂ B 2 | � � � � ∂ν 1 ∂ν 2 � � � � � � � � ∂ u 1 ∂ u 2 3. ˙ λ p , q ( B 1 ∪ B 2 ) = 0 ⇔ � � � � � = � . � � � � ∂ν 1 ∂ν 2 � � ⇓ | B 1 | = | B 2 |

  17. CONCLUSION: 1. λ p , q (Ω) ≥ λ p , q ( B + ∪ B − )

  18. CONCLUSION: 1. λ p , q (Ω) ≥ λ p , q ( B + ∪ B − ) 2 | = | B + ∪ B − | 2. λ p , q ( B + ∪ B − ) ≥ λ p , q ( B ′ 1 ∪ B ′ 2 ) for | B ′ 1 | = | B ′ 2

  19. CONCLUSION: 1. λ p , q (Ω) ≥ λ p , q ( B + ∪ B − ) 2 | = | B + ∪ B − | 2. λ p , q ( B + ∪ B − ) ≥ λ p , q ( B ′ 1 ∪ B ′ 2 ) for | B ′ 1 | = | B ′ 2 3. λ p , q is decreasing: if Ω 1 ⊂ Ω 2 , then λ p , q (Ω 1 ) ≥ λ p , q (Ω 2 )

  20. CONCLUSION: 1. λ p , q (Ω) ≥ λ p , q ( B + ∪ B − ) 2 | = | B + ∪ B − | 2. λ p , q ( B + ∪ B − ) ≥ λ p , q ( B ′ 1 ∪ B ′ 2 ) for | B ′ 1 | = | B ′ 2 3. λ p , q is decreasing: if Ω 1 ⊂ Ω 2 , then λ p , q (Ω 1 ) ≥ λ p , q (Ω 2 ) 2 ) ≥ λ p , q ( B 1 ∪ B 2 ) for | B 1 | = | B 2 | = | Ω | ⇒ λ p , q ( B ′ 1 ∪ B ′ = 2

  21. CONCLUSION: 1. λ p , q (Ω) ≥ λ p , q ( B + ∪ B − ) 2 | = | B + ∪ B − | 2. λ p , q ( B + ∪ B − ) ≥ λ p , q ( B ′ 1 ∪ B ′ 2 ) for | B ′ 1 | = | B ′ 2 3. λ p , q is decreasing: if Ω 1 ⊂ Ω 2 , then λ p , q (Ω 1 ) ≥ λ p , q (Ω 2 ) 2 ) ≥ λ p , q ( B 1 ∪ B 2 ) for | B 1 | = | B 2 | = | Ω | ⇒ λ p , q ( B ′ 1 ∪ B ′ = 2 Summarizing we get | B 1 | = | B 2 | = | Ω | λ p , q (Ω) ≥ λ p , q ( B 1 ∪ B 2 ) , 2

  22. Technique of Freitas-Henrot ( p = q = 2): 1. Reduction to pairs of balls

  23. Technique of Freitas-Henrot ( p = q = 2): 1. Reduction to pairs of balls 2. A minimizer u = u ( r ) solves u ′′ + N − 1 u ′ + [ λ 2 , 2 (Ω)] 2 u = µ 0 r on [0 , R 1 ] and [0 , R 2 ]. N.B.: explicit expression of the solution (Bessel functions)

  24. Current projects: p → 1 λ p , q (Ω): 1. lim

  25. Current projects: p → 1 λ p , q (Ω): we think that at least lim p → 1 λ p , p (Ω) equals either 1. lim � � | ∂ E 1 | | E 1 | , | ∂ E 2 | � � inf max , | E 1 | = | E 2 | , E 1 ∩ E 2 = ∅ , E 1 , E 2 ⊂ Ω | E 2 | or

  26. Current projects: p → 1 λ p , q (Ω): we think that at least lim p → 1 λ p , p (Ω) equals either 1. lim � � | ∂ E 1 | | E 1 | , | ∂ E 2 | � � inf max , | E 1 | = | E 2 | , E 1 ∩ E 2 = ∅ , E 1 , E 2 ⊂ Ω | E 2 | or inf { max { h ( E 1 ) , h ( E 2 ) } , | E ∗ 1 | = | E ∗ 2 | , E 1 ∩ E 2 = ∅ , E 1 , E 2 ⊂ Ω } where, for any set E , h denotes its Cheeger constant: | ∂ D | | D | = h ( E ∗ ) h ( E ) = inf D ⊂ E

  27. Current projects: p → 1 λ p , q (Ω): we think that at least lim p → 1 λ p , p (Ω) equals either 1. lim � � | ∂ E 1 | | E 1 | , | ∂ E 2 | � � inf max , | E 1 | = | E 2 | , E 1 ∩ E 2 = ∅ , E 1 , E 2 ⊂ Ω | E 2 | or inf { max { h ( E 1 ) , h ( E 2 ) } , | E ∗ 1 | = | E ∗ 2 | , E 1 ∩ E 2 = ∅ , E 1 , E 2 ⊂ Ω } where, for any set E , h denotes its Cheeger constant: | ∂ D | | D | = h ( E ∗ ) h ( E ) = inf D ⊂ E p →∞ λ p , q (Ω) 2. lim

  28. Thank you for your attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend