rational krylov methods for solving nonlinear eigenvalue
play

Rational Krylov Methods for Solving Nonlinear Eigenvalue Problems - PowerPoint PPT Presentation

Rational Krylov Methods for Solving Nonlinear Eigenvalue Problems Roel Van Beeumen rvanbeeumen@lbl.gov Computational Research Division Lawrence Berkeley National Laboratory BASCD 2016 Stanford December 3, 2016 Quadratic eigenvalue


  1. Rational Krylov Methods for Solving Nonlinear Eigenvalue Problems Roel Van Beeumen rvanbeeumen@lbl.gov Computational Research Division Lawrence Berkeley National Laboratory BASCD 2016 Stanford – December 3, 2016

  2. Quadratic eigenvalue problem Vibration analysis in structural analysis gives rise to ( λ 2 M + λ C + K ) x = 0 where λ is an eigenvalue x is an eigenvector M is the mass matrix C is the damping matrix K is the stiffness matrix R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 1

  3. Motivation: Nonlinear damping Clamped beam: Clamped sandwich beam: � � � � λ 2 M + λ C ( λ ) + K λ 2 M + λ C + K x = 0 x = 0 | C | | C ( λ ) | | λ | | λ | for λ on the imaginary axis R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 2

  4. Motivation: Active damping Active damping in cars: input output System Controller Delay eigenvalue problem � � λ 2 M + λ C + K + e − λτ E x = 0 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 3

  5. Motivation: Nonlinear boundary conditions Cavity design of a linear accelerator � 1 � ∇ × µ ∇ × E − λε E = 0 Maxwell’s equations + nonlinear waveguide boundary conditions:   k � � λ − κ 2  x = 0  K − λ M + i c , j W j j =1 where λ = ω 2 / c 2 κ c , j are the cutoff values R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 4

  6. Outline 1 Motivation 2 Solving Nonlinear Eigenvalue Problems Approximation Linearization pencils Solving linear eigenvalue problem 3 Numerical Experiment R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 5

  7. Nonlinear eigenvalue problem (NLEP) NLEP The nonlinear eigenvalue problem: A ( λ ) x = 0 where λ ∈ Ω ⊆ C : eigenvalue x ∈ C n \{ 0 } : eigenvector A : Ω → C n × n : matrix-valued function R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 6

  8. Nonlinear eigenvalue problem (NLEP) NLEP The nonlinear eigenvalue problem: A ( λ ) x = 0 where λ ∈ Ω ⊆ C : eigenvalue x ∈ C n \{ 0 } : eigenvector A : Ω → C n × n : matrix-valued function Note that the NLEP is � nonlinear in eigenvalue λ , � linear in eigenvector x . R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 6

  9. Solving NLEPs NLEP A ( λ ) x = 0 ⇓ 1 approximation via interpolation PEP P d ( λ ) x = 0 ⇓ 2 linearization GEP L ( λ ) x = 0 ⇓ 3 solving linear eigenvalue problem Solution R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 7

  10. Approximation NLEP Step 1: Polynomial interpolation A ( λ ) x = 0 A ( λ ) ≈ P d ( λ ) = A 0 + A 1 λ + A 2 λ 2 + · · · + A d λ d ⇓ PEP P d ( λ ) x = 0 ⇓ GEP L ( λ ) x = 0 ⇓ Solution R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 8

  11. Approximation NLEP Step 1: Polynomial interpolation A ( λ ) x = 0 A ( λ ) ≈ P d ( λ ) = A 0 + A 1 λ + A 2 λ 2 + · · · + A d λ d ⇓ PEP 1 P d ( λ ) x = 0 0 . 5 ⇓ GEP λ 0 L ( λ ) x = 0 1 2 3 4 ⇓ − 0 . 5 Solution R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 8

  12. Approximation NLEP Step 1: Polynomial interpolation A ( λ ) x = 0 A ( λ ) ≈ P d ( λ ) = A 0 + A 1 λ + A 2 λ 2 + · · · + A d λ d ⇓ PEP 1 P d ( λ ) x = 0 0 . 5 ⇓ GEP λ 0 L ( λ ) x = 0 1 2 3 4 ⇓ − 0 . 5 Solution R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 8

  13. Approximation NLEP Step 1: Polynomial interpolation A ( λ ) x = 0 A ( λ ) ≈ P d ( λ ) = A 0 + A 1 λ + A 2 λ 2 + · · · + A d λ d ⇓ PEP 1 P d ( λ ) x = 0 0 . 5 ⇓ GEP λ 0 L ( λ ) x = 0 1 2 3 4 ⇓ − 0 . 5 Solution R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 8

  14. Approximation NLEP Step 1: Polynomial interpolation A ( λ ) x = 0 A ( λ ) ≈ P d ( λ ) = A 0 + A 1 λ + A 2 λ 2 + · · · + A d λ d ⇓ PEP 1 P d ( λ ) x = 0 0 . 5 ⇓ GEP λ 0 L ( λ ) x = 0 1 2 3 4 ⇓ − 0 . 5 Solution R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 8

  15. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  16. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  17. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + A 2 n 2 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  18. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A 3 n 3 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  19. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A 4 n 4 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  20. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A 5 n 5 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  21. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A 6 n 6 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  22. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A 7 n 7 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  23. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A 8 n 8 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  24. Approximation: Newton interpolation Dynamic polynomial interpolation (Newton) A ( λ ) ≈ A 0 n 0 ( λ ) + A 1 n 1 ( λ ) + · · · + A 9 n 9 ( λ ) 1 0 . 5 λ 0 1 2 3 4 − 0 . 5 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 9

  25. Approximation: Polynomial versus Rational Scalar nonlinear function: √ A ( λ ) = 0 . 2 λ − 0 . 6 sin(2 λ ) = 0 with target set: Σ = [0 . 01 , 4] A ( λ ) 0 . 5 λ 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 10

  26. Approximation: Polynomial versus Rational Scalar nonlinear function: √ A ( λ ) = 0 . 2 λ − 0 . 6 sin(2 λ ) = 0 with target set: Σ = [0 . 01 , 4] A ( λ ) Leja points 0 . 5 λ 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 10

  27. Approximation: Polynomial versus Rational Scalar nonlinear function: √ A ( λ ) = 0 . 2 λ − 0 . 6 sin(2 λ ) = 0 with target set: Σ = [0 . 01 , 4] A ( λ ) Leja points 0 . 5 λ 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 A ( λ ) Leja–Bagby points 0 . 5 λ 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 10

  28. Approximation: Polynomial versus Rational Scalar nonlinear function: √ A ( λ ) = 0 . 2 λ − 0 . 6 sin(2 λ ) = 0 interpolation error 10 0 pol. Leja rat. Leja–Bagby 10 - 5 10 - 10 10 - 15 0 20 40 60 80 100 number of interpolation nodes R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 11

  29. Approximation: Polynomial versus Rational Scalar nonlinear function: √ A ( λ ) = 0 . 2 λ − 0 . 6 sin(2 λ ) = 0 interpolation error convergence of eigenvalues 10 0 10 0 pol. Leja Newton Rational Krylov rat. Leja–Bagby Fully Rational Krylov 10 - 5 10 - 5 10 - 10 10 - 10 10 - 15 10 - 15 0 20 40 60 80 100 0 20 40 60 80 100 number of interpolation nodes iteration R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 11

  30. Linearization pencils NLEP A ( λ ) x = 0 ⇓ PEP Step 2: Linearization P d ( λ ) x = 0 P d ( λ ) x = 0 ⇓ ⇓ GEP L ( λ ) x = ( A − λ B ) x = 0 L ( λ ) x = 0 ⇓ Solution R. Van Beeumen (Berkeley Lab) Rational Krylov methods for NLEPs Stanford – December 3, 2016 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend