an efficient algorithm for generating symmetric ice piles
play

An Efficient Algorithm for Generating Symmetric Ice Piles Roberto - PowerPoint PPT Presentation

An Efficient Algorithm for Generating Symmetric Ice Piles Roberto Mantaci 1 Paolo Massazza 2 Jean-Baptiste Yuns 1 1 LIAFA, Universit Paris Diderot 2 Dipartimento di Scienze Teoriche e Applicate Universit degli Studi dellInsubria-Varese


  1. An Efficient Algorithm for Generating Symmetric Ice Piles Roberto Mantaci 1 Paolo Massazza 2 Jean-Baptiste Yunès 1 1 LIAFA, Université Paris Diderot 2 Dipartimento di Scienze Teoriche e Applicate Università degli Studi dell’Insubria-Varese ICTCS 2014 Perugia, September 17-19th 2014 Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 1 / 19

  2. Abstract Our Interest The properties of SIPM k ( n ) , a new granular dynamical system representing symmetric ice piles Goal The design of an efficient (CAT) algorithm which generates SIPM k ( n ) Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 2 / 19

  3. Introduction The Sand Pile Game Sand Piles are integer sequences which describe the states of the Sand Pile Game Initial state: ( n ) , n sand grains in column 0, RFall Rule: in ( s 0 , . . . , s l ) a grain can fall from column i downto i + 1 iff the height difference is at least 2, s i − s i + 1 ≥ 2 (6,3,2) 0 1 2 Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 3 / 19

  4. Introduction Sand Pile Model Definition (SPM ( n ) ) SPM ( n ) is the set of linear partitions of n obtained by closing { ( n ) } w.r.t. RFall.  ( s 0 , . . . , s i − 1 , s i − 1 , s i + 1 + 1 , . . . , s l ) if 0 ≤ i ≤ l ,  RFall ( s , i ) = s i − s i + 1 ≥ 2 ⊥ otherwise  introduced by Back, Tang, Wiesenfeld [’88] deeply investigated by Goles, Kiwi [’92] used to simulate physical phenomena (e.g. avalanches) particular case of the chip firing game Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 4 / 19

  5. Introduction Sand Pile Model Definition (SPM ( n ) ) SPM ( n ) is the set of linear partitions of n obtained by closing { ( n ) } w.r.t. RFall.  ( s 0 , . . . , s i − 1 , s i − 1 , s i + 1 + 1 , . . . , s l ) if 0 ≤ i ≤ l ,  RFall ( s , i ) = s i − s i + 1 ≥ 2 ⊥ otherwise  introduced by Back, Tang, Wiesenfeld [’88] deeply investigated by Goles, Kiwi [’92] used to simulate physical phenomena (e.g. avalanches) particular case of the chip firing game Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 4 / 19

  6. Introduction Ice Pile Model Ice grains can slide... RSlide k k’<k i i+k’ Definition (IPM k ( n ) ) For any k > 0, IPM k ( n ) is the set of linear partitions of n obtained by closing { ( n ) } w.r.t. RFall and RSlide k . introduced by Goles, Morvan, Phan [’98] CAT generated by Massazza, Radicioni [2010] Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 5 / 19

  7. Introduction Accessibility in IPM k ( n ) k+2 k+1 k+1 1 h h h−1 k+1 k 1 k 1 1 k h h−1 h−2 k+1 ... 1 h−q+1 h−q Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 6 / 19

  8. Introduction Accessibility in IPM k ( n ) k+2 k+1 k+1 1 h h h−1 k+1 k 1 k 1 1 k h h−1 h−2 k+1 ... 1 h−q+1 h−q Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 7 / 19

  9. Introduction SSPM ( n ) The Symmetric Sand Pile Model SSPM ( n ) introduced by Formenti, Masson, Pisokas [’06] studied by Phan [’08] symmetric version of SPM ( n ) (admits also left moves) Definition (SSPM ( n ) ) SSPM ( n ) is the set of integer sequences obtained by closing { ( n ) } w.r.t. RFall , LFall (indices of columns can be negative). Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 8 / 19

  10. Introduction BSPM ( n ) The Bidimensional Sand Pile Model BSPM ( n ) introduced by Duchi, Mantaci, Phan, Rossin [’06] as a generalization of SPM ( n ) to 2D. Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 9 / 19

  11. Introduction SPM,IPM k , SSPM and BSPM: known results SPM ( n ) IPM k ( n ) SSPM ( n ) BSPM lattice yes yes no no characterization elements elements elements ? fixed point fixed point fixed points ? CAT generation yes yes yes ? Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 10 / 19

  12. Introduction CAT Algorithm for IPM k ( n ) - Spanning Tree CAT Algorithm (Massazza-Radicioni) (10) Spans the poset using a tree; (9,1) Each element is generated applying (8,2) (7,3) (8,1,1) (the rightmost) IPM k ( n ) move to the (6,4) (7,2,1) grand ancestor of the current partition; (5,5) (6,3,1) (7,1,1,1) Partitions are (5,4,1) (6,2,2) generated in increasing neglex order. (5,3,2) (6,2,1,1) (4,4,2) (5,3,1,1) (6,1,1,1,1) (4,3,3) (4,4,1,1) (5,2,2,1) (4,3,2,1) (5,2,1,1,1) (3,3,3,1) (4,2,2,2) (4,3,1,1,1) (3,3,2,2) (4,2,2,1,1) (3,3,2,1,1) (4,2,1,1,1,1) (3,2,2,2,1) (3,3,1,1,1,1) (3,2,2,1,1,1) (2,2,2,2,1,1) (2,2,2,1,1,1,1) Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 11 / 19

  13. Introduction CAT Algorithm for IPM k ( n ) - Spanning Tree CAT Algorithm (Massazza-Radicioni) (10) Spans the poset using a tree; (9,1) Each element is generated applying (8,2) (7,3) (8,1,1) (the rightmost) IPM k ( n ) move to the (6,4) (7,2,1) grand ancestor of the current partition; (5,5) (6,3,1) (7,1,1,1) Partitions are (5,4,1) (6,2,2) generated in increasing neglex order. (5,3,2) (6,2,1,1) (4,4,2) (5,3,1,1) (6,1,1,1,1) (4,3,3) (4,4,1,1) (5,2,2,1) (4,3,2,1) (5,2,1,1,1) (3,3,3,1) (4,2,2,2) (4,3,1,1,1) (3,3,2,2) (4,2,2,1,1) (3,3,2,1,1) (4,2,1,1,1,1) (3,2,2,2,1) (3,3,1,1,1,1) (3,2,2,1,1,1) (2,2,2,2,1,1) (2,2,2,1,1,1,1) Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 11 / 19

  14. Introduction CAT Algorithm for IPM k ( n ) - Spanning Tree CAT Algorithm (Massazza-Radicioni) (10) Spans the poset using a tree; (9,1) Each element is generated applying (8,2) (7,3) (8,1,1) (the rightmost) IPM k ( n ) move to the (6,4) (7,2,1) grand ancestor of the current partition; (5,5) (6,3,1) (7,1,1,1) Partitions are (5,4,1) (6,2,2) generated in increasing neglex order. (5,3,2) (6,2,1,1) (4,4,2) (5,3,1,1) (6,1,1,1,1) (4,3,3) (4,4,1,1) (5,2,2,1) (4,3,2,1) (5,2,1,1,1) (3,3,3,1) (4,2,2,2) (4,3,1,1,1) (3,3,2,2) (4,2,2,1,1) (3,3,2,1,1) (4,2,1,1,1,1) (3,2,2,2,1) (3,3,1,1,1,1) (3,2,2,1,1,1) (2,2,2,2,1,1) (2,2,2,1,1,1,1) Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 11 / 19

  15. Introduction CAT Algorithm for IPM k ( n ) - Spanning Tree CAT Algorithm (Massazza-Radicioni) (10) Spans the poset using a tree; (9,1) Each element is generated applying (8,2) (7,3) (8,1,1) (the rightmost) IPM k ( n ) move to the (6,4) (7,2,1) grand ancestor of the current partition; (5,5) (6,3,1) (7,1,1,1) Partitions are (5,4,1) (6,2,2) generated in increasing neglex order. (5,3,2) (6,2,1,1) (4,4,2) (5,3,1,1) (6,1,1,1,1) (4,3,3) (4,4,1,1) (5,2,2,1) (4,3,2,1) (5,2,1,1,1) (3,3,3,1) (4,2,2,2) (4,3,1,1,1) (3,3,2,2) (4,2,2,1,1) (3,3,2,1,1) (4,2,1,1,1,1) (3,2,2,2,1) (3,3,1,1,1,1) (3,2,2,1,1,1) (2,2,2,2,1,1) (2,2,2,1,1,1,1) Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 11 / 19

  16. Introduction CAT Algorithm for IPM k ( n ) - Spanning Tree CAT Algorithm (Massazza-Radicioni) (10) Spans the poset using a tree; (9,1) Each element is generated applying (8,2) (7,3) (8,1,1) (the rightmost) IPM k ( n ) move to the (6,4) (7,2,1) grand ancestor of the current partition; (5,5) (6,3,1) (7,1,1,1) Partitions are (5,4,1) (6,2,2) generated in increasing neglex order. (5,3,2) (6,2,1,1) (4,4,2) (5,3,1,1) (6,1,1,1,1) (4,3,3) (4,4,1,1) (5,2,2,1) (4,3,2,1) (5,2,1,1,1) (3,3,3,1) (4,2,2,2) (4,3,1,1,1) (3,3,2,2) (4,2,2,1,1) (3,3,2,1,1) (4,2,1,1,1,1) (3,2,2,2,1) (3,3,1,1,1,1) (3,2,2,1,1,1) (2,2,2,2,1,1) (2,2,2,1,1,1,1) Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 11 / 19

  17. Symmetric Ice piles Symmetric Ice piles Definition (SIPM k ( n ) ) SIPM k ( n ) is the set of integer sequences obtained by closing { ( n ) } w.r.t. RFall , LFall , RSlide k , LSlide k RFall(a,0) �� �� �� �� �� �� �� �� LFall(a,−1) �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� −1 0 1 −3 −2 −1 0 1 2 Fall and Slide moves ( k = 3) unimodal sequence of n : a = ( a 0 , . . . , a l ) such that � l i = 0 a i = n and a 0 ≤ a 1 ≤ . . . ≤ a j ≥ a j + i ≥ . . . ≥ a l for some j . A generalized unimodal sequence is a pair ( a , j ) where a is a unimodal sequence (the form) and j an integer (the position). Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 12 / 19

  18. Symmetric Ice piles Symmetric Ice piles Definition (SIPM k ( n ) ) SIPM k ( n ) is the set of integer sequences obtained by closing { ( n ) } w.r.t. RFall , LFall , RSlide k , LSlide k RFall(a,0) �� �� �� �� �� �� �� �� LFall(a,−1) �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� −1 0 1 −3 −2 −1 0 1 2 Fall and Slide moves ( k = 3) unimodal sequence of n : a = ( a 0 , . . . , a l ) such that � l i = 0 a i = n and a 0 ≤ a 1 ≤ . . . ≤ a j ≥ a j + i ≥ . . . ≥ a l for some j . A generalized unimodal sequence is a pair ( a , j ) where a is a unimodal sequence (the form) and j an integer (the position). Mantaci, Massazza, Yunès (Paris, Varese) ICTCS 2014 12 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend