an application of the bauer fike theorem to nonlinear
play

An application of the Bauer-Fike theorem to nonlinear eigenproblems - PowerPoint PPT Presentation

An application of the Bauer-Fike theorem to nonlinear eigenproblems Elias Jarlebring TU Braunschweig Insitut Computational Mathematics joint work with Johan Karlsson, KTH Perturbation theorems play a very essential role in computational


  1. An application of the Bauer-Fike theorem to nonlinear eigenproblems Elias Jarlebring TU Braunschweig Insitut Computational Mathematics joint work with Johan Karlsson, KTH

  2. Perturbation theorems play a very essential role in computational processes for eigenproblems. Golub, van der Vorst E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 2 / 16

  3. Perturbation theorems play a very essential role in computational processes for eigenproblems. Golub, van der Vorst What about nonlinear eigenvalue problems ([Ruhe’78],[Mehrmann,Voss’04]) 0 = M ( λ ) x ? ( ⋆ ) E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 2 / 16

  4. Perturbation theorems play a very essential role in computational processes for eigenproblems. Golub, van der Vorst What about nonlinear eigenvalue problems ([Ruhe’78],[Mehrmann,Voss’04]) 0 = M ( λ ) x ? ( ⋆ ) Eigenvalue perturbation: Given A 1 , A 2 ∈ R n × n ∈ σ ( A 1 ) λ 1 λ 2 ∈ σ ( A 2 ) how “large” is | λ 1 − λ 2 | ? E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 2 / 16

  5. Perturbation theorems play a very essential role in computational processes for eigenproblems. Golub, van der Vorst What about nonlinear eigenvalue problems ([Ruhe’78],[Mehrmann,Voss’04]) λ x = G ( λ ) x ? ( ⋆ ) Nonlinear Eigenvalue perturbation: Given A 1 , A 2 ∈ R n × n ∈ σ ( G 1 ( λ 1 )) λ 1 λ 2 ∈ σ ( G 2 ( λ 2 )) how “large” is | λ 1 − λ 2 | ? E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 2 / 16

  6. Perturbation theorems play a very essential role in computational processes for eigenproblems. Golub, van der Vorst What about nonlinear eigenvalue problems ([Ruhe’78],[Mehrmann,Voss’04]) λ x = G ( λ ) x ? ( ⋆ ) Nonlinear Eigenvalue perturbation: Given A 1 , A 2 ∈ R n × n ∈ σ ( G 1 ( λ 1 )) λ 1 λ 2 ∈ σ ( G 2 ( λ 2 )) how “large” is | λ 1 − λ 2 | ? Today: How can we apply the Bauer-Fike theorem to ( ⋆ )? E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 2 / 16

  7. Perturbation theorems play a very essential role in computational processes for eigenproblems. Golub, van der Vorst What about nonlinear eigenvalue problems ([Ruhe’78],[Mehrmann,Voss’04]) λ x = G ( λ ) x ? ( ⋆ ) Nonlinear Eigenvalue perturbation: Given A 1 , A 2 ∈ R n × n ∈ σ ( G 1 ( λ 1 )) λ 1 λ 2 ∈ σ ( G 2 ( λ 2 )) how “large” is | λ 1 − λ 2 | ? Today: How can we apply the Bauer-Fike theorem to ( ⋆ )? Introduction: Nonlinear eigenvalue problems the Bauer-Fike Theorem Accuracy iteration E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 2 / 16

  8. Nonlinear eigenproblems Quadratic eigenproblem: Linearization[MMMM’06], SOAR[Bai,Su’05], JD[Slejpen et al’96] � � A − λ I + λ 2 B 0 = v σ ( A + B λ 2 ) ∈ λ E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 3 / 16

  9. Nonlinear eigenproblems Quadratic eigenproblem: Linearization[MMMM’06], SOAR[Bai,Su’05], JD[Slejpen et al’96] � � A − λ I + λ 2 B 0 = v σ ( A + B λ 2 ) ∈ λ Example: � 1 � 2 � � 1 − 1 A = , B = 1 2 − 1 2 3 λ ∈ σ ( A + Bλ 2 ) 2 1 Im 0 −1 −2 −3 0 0.5 1 1.5 E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 3 / 16 Re

  10. Nonlinear eigenproblems Delay eigenvalue problem: LMS[Engelborghs, et al’99], Pseudospectral differencing[Breda, et al’05] � � A − λ I + e − λ B 0 = v σ ( A + Be − λ ) λ ∈ E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 3 / 16

  11. Nonlinear eigenproblems Delay eigenvalue problem: LMS[Engelborghs, et al’99], Pseudospectral differencing[Breda, et al’05] � � A − λ I + e − λ B 0 = v σ ( A + Be − λ ) λ ∈ Example: � 1 � 2 � � 1 − 1 A = , B = 1 2 − 1 2 λ ) λ ∈ σ ( A + Be − 50 Im 0 −50 −6 −4 −2 0 2 4 6 E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs Re 3 / 16

  12. The Bauer-Fike Theorem [Bauer,Fike’60] Classical formulation Theorem (BF) If A 1 = V 1 D 1 V 1 − 1 then for any λ 2 ∈ σ ( A 2 ) λ 1 ∈ σ ( A 1 ) | λ 2 − λ 1 | ≤ κ ( V 1 ) � A 1 − A 2 � . min E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 4 / 16

  13. The Bauer-Fike Theorem [Bauer,Fike’60] Classical formulation Theorem (BF) If A 1 = V 1 D 1 V 1 − 1 then for any λ 2 ∈ σ ( A 2 ) λ 1 ∈ σ ( A 1 ) | λ 2 − λ 1 | ≤ κ ( V 1 ) � A 1 − A 2 � . min 8 σ ( A 1 ) 6 σ ( A 2 ) 4 2 Im 0 −2 −4 −6 −8 −5 0 5 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 4 / 16

  14. The Bauer-Fike Theorem [Bauer,Fike’60] Classical formulation Theorem (BF) If A 1 = V 1 D 1 V 1 − 1 then for any λ 2 ∈ σ ( A 2 ) λ 1 ∈ σ ( A 1 ) | λ 2 − λ 1 | ≤ κ ( V 1 ) � A 1 − A 2 � . min 8 σ ( A 1 ) 6 σ ( A 2 ) 4 κ 1 ∆ 2 Im 0 κ 1 ∆ κ 1 ∆ −2 −4 κ 1 ∆ −6 −8 −5 0 5 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 4 / 16

  15. The Bauer-Fike Theorem [Bauer,Fike’60] Classical formulation Theorem (BF) If A 2 = V 2 D 2 V 2 − 1 then for any λ 1 ∈ σ ( A 1 ) λ 2 ∈ σ ( A 2 ) | λ 2 − λ 1 | ≤ κ ( V 2 ) � A 1 − A 2 � . min 8 σ ( A 1 ) 6 σ ( A 2 ) 4 κ 2 ∆ 2 Im 0 κ 2 ∆ κ 2 ∆ −2 κ 2 ∆ −4 −6 −8 −5 0 5 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 4 / 16

  16. The Bauer-Fike Theorem [Bauer,Fike’60] Classical formulation Theorem (BF) If A 2 = V 2 D 2 V 2 − 1 then for any λ 1 ∈ σ ( A 1 ) dist( λ 1 , σ ( A 2 )) := λ 2 ∈ σ ( A 2 ) | λ 2 − λ 1 | ≤ κ ( V 2 ) � A 1 − A 2 � . min 8 σ ( A 1 ) 6 σ ( A 2 ) 4 κ 2 ∆ 2 Im 0 κ 2 ∆ κ 2 ∆ −2 κ 2 ∆ −4 −6 −8 −5 0 5 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 4 / 16

  17. The Bauer-Fike Theorem Theorem (BF - Dist) If λ 1 ∈ σ ( A 1 ) and λ 2 ∈ σ ( A 2 ) then a ) dist( λ 1 , σ ( A 2 )) ≤ κ ( V 2 ) � A 1 − A 2 � b ) dist( λ 2 , σ ( A 1 )) ≤ κ ( V 1 ) � A 1 − A 2 � where dist( λ, S ) = min s ∈ S | λ − s | . E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 5 / 16

  18. The Bauer-Fike Theorem Theorem (BF - Dist) If λ 1 ∈ σ ( A 1 ) and λ 2 ∈ σ ( A 2 ) then a ) dist( λ 1 , σ ( A 2 )) ≤ κ ( V 2 ) � A 1 − A 2 � b ) dist( λ 2 , σ ( A 1 )) ≤ κ ( V 1 ) � A 1 − A 2 � where dist( λ, S ) = min s ∈ S | λ − s | . For the Hausdorff metric � � d H ( S 1 , S 2 ) := max s 1 ∈ S 1 dist( s 1 , S 2 ) , max max s 2 ∈ S 2 dist( s 2 , S 1 ) E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 5 / 16

  19. The Bauer-Fike Theorem Theorem (BF - Dist) If λ 1 ∈ σ ( A 1 ) and λ 2 ∈ σ ( A 2 ) then a ) dist( λ 1 , σ ( A 2 )) ≤ κ ( V 2 ) � A 1 − A 2 � b ) dist( λ 2 , σ ( A 1 )) ≤ κ ( V 1 ) � A 1 − A 2 � where dist( λ, S ) = min s ∈ S | λ − s | . For the Hausdorff metric � � d H ( S 1 , S 2 ) := max s 1 ∈ S 1 dist( s 1 , S 2 ) , max max s 2 ∈ S 2 dist( s 2 , S 1 ) Theorem (BF - Hausdorff metric) d H ( σ ( A 1 ) , σ ( A 2 )) ≤ max( κ ( V 1 ) , κ ( V 2 )) � A 1 − A 2 � E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 5 / 16

  20. Literature (non-exhaustive) Perturbation of polynomial eigenvalue problems: [Tisseur’00] (backward error) [Higham, Tisseur’03] [Chu,Lin’04] (Bauer-Fike) [Dedieu, Tisseur’03] [Karow,Kressner,Tisseur’06] (condition number) Nonlinear eigenvalue problems: [Hadeler ’69] (generalized Rayleigh-functionals) [Ehrmann ’65] [Cullum, Ruehli ’01] (pseudospectra) [Wagenknecht,Michiels,Green’07] (pseudospectra) E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 6 / 16

  21. Accuracy iteration Root-finding problem: find λ ∗ s.t. λ ∗ = f ( λ ∗ ). E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 7 / 16

  22. Accuracy iteration Root-finding problem: find λ ∗ s.t. λ ∗ = f ( λ ∗ ). Error bound: (a posteori) Given an approximation ˜ λ , bound | ˜ λ − λ ∗ | . 4 ˜ λ 3 λ ∗ 2 Im 1 0 −1 −2 0 2 4 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 7 / 16

  23. Accuracy iteration Root-finding problem: find λ ∗ s.t. λ ∗ = f ( λ ∗ ). Error bound: (a posteori) Given an approximation ˜ λ , bound | ˜ λ − λ ∗ | . Assume | ˜ λ − λ ∗ | < ∆ k , i.e., λ ∗ ∈ V (∆ k ). 4 ˜ λ 3 λ ∗ 2 Im 1 0 ∆ k −1 −2 0 2 4 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 7 / 16

  24. Accuracy iteration Root-finding problem: find λ ∗ s.t. λ ∗ = f ( λ ∗ ). Error bound: (a posteori) Given an approximation ˜ λ , bound | ˜ λ − λ ∗ | . Assume | ˜ λ − λ ∗ | < ∆ k , i.e., λ ∗ ∈ V (∆ k ). | ˜ λ − λ ∗ | ≤ 4 ˜ λ 3 λ ∗ 2 Im 1 0 ∆ k −1 −2 0 2 4 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 7 / 16

  25. Accuracy iteration Root-finding problem: find λ ∗ s.t. λ ∗ = f ( λ ∗ ). Error bound: (a posteori) Given an approximation ˜ λ , bound | ˜ λ − λ ∗ | . Assume | ˜ λ − λ ∗ | < ∆ k , i.e., λ ∗ ∈ V (∆ k ). | ˜ | ˜ λ − f (˜ λ ) | + | f (˜ λ − λ ∗ | ≤ λ ) − f ( λ ∗ ) | 4 ˜ λ 3 λ ∗ f (˜ 2 λ ) ˜ Im | λ ∗ − λ | 1 0 ∆ k −1 −2 0 2 4 Re E. Jarlebring (TU Braunschweig) Bauer-Fike and NLEVPs 7 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend