a05 quantum cr a05 quantum crystal and ring e ystal and
play

A05: Quantum cr A05: Quantum crystal and ring e ystal and ring - PowerPoint PPT Presentation

A05: Quantum cr A05: Quantum crystal and ring e ystal and ring exchange change Novel magnetic stat No el magnetic states es induced b induced by ring e ring exchange change Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.)


  1. A05: Quantum cr A05: Quantum crystal and ring e ystal and ring exchange change Novel magnetic stat No el magnetic states es induced b induced by ring e ring exchange change Members: Tsutomu Momoi (RIKEN) Kenn Kubo (Aoyama Gakuinn Univ.) Seiji Miyashita (Univ. of Tokyo) Hirokazu Tsunetsugu (ISSP, Univ. of Tokyo) Takuma Ohashi (RIKEN � Osaka Univ.) Masahiro Sato (RIKEN) 1

  2. � Multiple-spin exchange model � Mott transition in frustrated on the triangular lattice electron systems 2D solid 3 He (T. Momoi, K. Kubo) Ring exchange reentrant behavior (T. Ohashi, T. Momoi, � Spin nematic/quadrupolar phases H. Tsunetsugu, N. Kawakami) S=1/2 frustrated ferromagnets � Spin dynamics, spin crossover (S. Miyashita) S=1 bilinear-biqurdratic � Supersolid model (H. Tsunetsugu) � Magnetism in cold atoms (S. Miyashita) spin-triplet RVB state (T. Momoi) 2

  3. Magnon pairing and crystallization in triangular lattice multiple-spin exchange model Collaborators: Philippe Sindzingre (Univ. of P. & M. Curie) Tsutomu Momoi ( RIKEN ) Kenn Kubo (Aoyama Gakuinn Univ.) Nic Shannon (Bristol Univ.) Ryuichi Shindou (RIKEN) 1. Introduction: Spin nematic order Outline BEC of bound magnon pairs Spin-triplet RVB state 2. Multiple-spin exchange model: J-J 4 -J 5 -J 6 model Spin nematic phase, 1/2 magnetization plateau 3. Summary

  4. Introduction: Competition between FM and AF orders Nearest-neighbor FM interaction J 1 + competing antiferromagnetic interaction J 2 FM order AF order 0 J 2 Weak AF interaction Strong AF interaction Emergence of new quantum phase 4

  5. Frustrated magnets with 1 st neighbor FM interaction Triangular lattice Square lattice 2D solid He3 Pb 2 VO(PO 4 ) 2 E. Kaul et al. (CuCl)LaNb 2 O 7 , (CuBr)A 2 Nb 3 O 10 H. Kageyama et al . Ring exchange Cu 2+ 1D zigzag lattice edge-sharing chain cuprates Cl LiCuVO 4 , LiCu 2 O 2 , Rb 2 Cu 2 Mo 3 O 12 , Li 2 ZrCuO 4 Kanamori-Goodenough Rule O 2 − Cu 2+ FM nearest neighbor J 1 AF next nearest neighbor J 2 5

  6. Spin nematic phase in between FM and AF phases J 1 - J 2 model N. Shannon, TM, and P. Sindzingre, ∑ ∑ = + Square lattice ⋅ ⋅ J S S J S S , H 1 i j 2 i j PRL 96 , 027213 (2006) . N.N. N.N .N 1D zigzag lattice Nematic phase ( π ,0) AF FM J 1 , AF J 2 T. Hikihara, L. Kecke, TM, and A. Furusaki, PRB (2008) M. Sato, TM, and A. Furusaki, PRB (2009) Poster P40 FM Neel AF FM nearest neighbor J 1 AF next nearest neighbor J 2 6

  7. Characteristics of spin nematic order in spin-1/2 frustrated ferromagnets N. Shannon, TM, and P. Sindzingre, PRL 96 , 027213 (2006) . spin � uniform state, i.e. no crystallization liquid-like � � � no spin order at h =0 = behavior S 0 i or no transverse spin order for h >0 = = x y S S 0 i i � gapless excitations � spin quadrupolar order 2 − 2 = − = + Bond-nematic order x y x x y y xy x y y x Q S S S S , Q S S S S ij i j i j ij i j i j 7

  8. Spin nematic order can be regarded as “BEC of bound magnon pairs with k =(0,0)” A. V. Chubukov, PRB (1991) h N. Shannon, TM, and P. Sindzingre, PRL (2006) . phase − = − 2 θ i S S Qe coherence i j − = − − − + = 2 θ x x y y x y y x i S S S S S S i S S S S Qe i j i j i j i j i j spin quadrupolar order xy − 2 2 x y 8

  9. Why bound magnon pairs are stable in frustrated FM ? Near saturation field, 1. Individual magnons are nearly localized In square-lattice J 1 - J 2 model, zero line modes at J 2 /| J 1 | = ½. T wo (or three) magnon bound states are mobile and stable 2. In square-lattice J 1 - J 2 model, d -wave two-magnon bound states with k =(0,0) are most favored. Coherent motion 9

  10. Bond-nematic ordered state in S=1/2 magnets Roughly speaking,….. Linear combination of all possible configurations of S z = ± 1 dimers ∑ ( ) z # of vertical S dimers − =1 ± z 1 dimers with S = 1 dimer configuration = -- + -- + …….. entangled state cf. Spin quadrupolar order state in S = 1 bilinear-biquadratic model − 2 2 = − x y x x y y Q S S S S ≈ ⊗ i φ wave function i i i i i Site-nematic order i = + xy x y y x Q S S S S product state i i i i i 10

  11. Slave boson formulation of spin nematic states in frustrated ferromagnets R. Shindou and TM, PRB (2009) Fermion representation 1 μ ⎡ ⎤ = † σ μ = , , S f f x y z ( ) ⎣ ⎦ α μ β j 2 j j αβ Local constraint , fermion operators f f ↑ ↓ j j Using Hubbard-Stratonovich transformation, we can decouple FM interaction into triplet pairing ⎡ ⎤ 0 D ∑ μ , − ⋅ → − 2 + ψ † ψ τ = ⎢ ij 4 | | [ t ] tri ⎥ S S D U U , μ μ μ − ∗ , , 0 i j ij i ij j ij D ⎣ ⎦ μ = μ , , , x y z ij ⎡ ⎤ f f where D ij denote d-vectors of triplet pairing ↑ ↓ , , j j ψ = ⎢ ⎥ − j † † ⎢ f f ⎥ ⎣ ⎦ ↓ ↑ ⎛ ⎞ , , j j ⎛ ⎞ f f f f − + x y z D iD D ⎜ ↑ ↑ ↑ ↓ ⎟ ˆ j l j l Δ = = ⎜ jl jl jl ⎟ ⎜ ⎟ ⎜ ⎟ + jl z x y D D iD ⎝ ⎠ f f f f ⎝ ⎠ jl jl jl ↓ ↑ ↓ ↓ j l j l In mean-field approximation, FM interaction prefers triplet pairing. 11

  12. Theoretical description of bond-nematic states When triplet pairing appears, spin space becomes anisotropic. Quadrupolar order parameter δ 2 μν − μν = μ ν − + 2 . Q D D D H.c in mean-field approximation jl jl jl jl 3 ( ) ( ) ( ) ∗ 2 2 − − = = = − + − + † † x y x y y x S S f f f f f f f f D D i D D D D For example, ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↓ j l jl jl jl jl jl jl j j l l j l j l cf. nematic order in liquid crystals, d ( r ): director vectors δ ( ) ( ) ( ) ( ) μν μν = μ ν − 3 Q r d r d r d r rod director – D-vector correspondence

  13. Mean-field approximation of square lattice J 1 -J 2 model New phase triplet-pairing on FM interactions and hopping amplitude on AF interactions spin-triple resonating valence bond state (spin-triplet RVB state) NN bond (triplet pairing) � Balian-Werthamer (BW) state π -flux states Nematic phase “flat-band” state FM J 1 , AF J 2 N. Shannon, TM and P. Sindzingre (‘06)

  14. This mean-field solution has the same magnetic structure as d-wave bond nematic state. BW state d-wave bond nematic state N. Shannon, TM and P. Sindzingre (‘06) ( ) = δ − δ x D i + − , , jl j l e j l e x x ( ) = δ − δ y D i + − , , jl j l e j l e y y

  15. Low energy excitations around the BW state � Spin fluctuation has gapless Nambu-Goldstone modes � Individual spinon excitations have a full gap � Gauge fluctuation also has a gap. (a gapped Z 2 state) Perspectives Variational Monte Carlo simulation 15

  16. Magnetism of tw Magnetism of two-dimensional solid o-dimensional solid 3 He on graphit He on graphite 4/7 phase in 2 nd layer of 2D solid 3 He on graphite gapless spin liquid magnetization plateau at 1/2 � specific heat K. Ishida, M. Morishita, H. Fukuyama, PRL (1997) linear specific heat double peak structure (cf. 2D FM) � No drop of susceptibility down to 10 μ K H. Nema, A. Yamaguchi, T. Hayakawa, R. Masutomi, Y. Karaki, and H. Ishimoto, and H. Ishimoto, PRL (2009). PRL (2004). 16

  17. Theoretical model: multiple ‐ spin exchange model Ring-exchange interactions Dirac, Roger, Hetherington, Delrieu, RMP 55 , 1 (1983) Three spin exchange is dominant and ferromagnetic + − = + + 1 P P P i j ( , ) P j k ( , ) P k i ( , ) 3 3 2 2 2 � effective two spin exchange is ferromagnetic ( J = J 2 -2 J 3 ) “Frustrated ferromagnet” Parameter fitting Collin et al., PRL 86 , 2447 (2001). J =-2.8, J 4 =1.4, J 5 =0.45, J 6 =1.25 (m K ) 17

  18. In case of two- and four-spin exchange model ( J - J 4 model) model) In a strong J 4 regime J 4 /|J| = ½ � At zero field, the ground state doesn’t have any order and it has a large spin gap. G.Misguich, B.Bernu, C.Lhuillier, and C.Waldtmann, PRL (1998) � Magnetization process has a wide plateau at m / m sat = ½, which comes from uuud spin- density wave structure TM, H. Sakamoto, and K.Kubo, PRB (1999) h / J 4 18

  19. In case of two- and four-spin exchange model ( J - J 4 model) model) Near the border of FM phase 0.24 < K/|J| < 0.28 TM, P. Sindzingre, N. Shannon, PRL (2006) � m > 0, − − − 3 ϑ = ϕ i S S S e + + i i e i e condensation of 3 magnon bound states 1 2 = = � “Triatic order” (octupolar order) x y S S 0 i i � m = 0, strong competition between nematic and triatic correlations J 4 /|J| cf. J 4 /| J |=0.5, J 5 /| J |=0.16, J 6 /| J |=0.44 Collin et al. 19

  20. J - J 4 - J 5 - J 6 ring-e ring-exchange model hange model We aim at giving a quantitative comparison with experiments. � In In the classical limit (S the classical limit (S � ∞ ) � In the In the quantum case (S=1/2) uantum case (S=1/2) Mean-field phase diagram One magnon excitations ( ) ( ) ε = − + − + k h 2 J 4 J 10 J 2 J 2 4 5 6 { } × − ⋅ − ⋅ − ⋅ 3 cos k e cos k e cos k e 1 2 3 have zero flat mode at mean-field phase boundary. Individual magnons are localized ! 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend