a well balanced reconstruction of wet dry fronts for the
play

A well-balanced reconstruction of wet/dry fronts for the shallow - PowerPoint PPT Presentation

A well-balanced reconstruction of wet/dry fronts for the shallow water equations Guoxian Chen Wuhan University, P.R.China Co-authors: Bollermann, Kurganov, Noelle May 24, 2014 Outline Governing Equations 1 A Central-Upwind Scheme for the


  1. A well-balanced reconstruction of wet/dry fronts for the shallow water equations Guoxian Chen Wuhan University, P.R.China Co-authors: Bollermann, Kurganov, Noelle May 24, 2014

  2. Outline Governing Equations 1 A Central-Upwind Scheme for the Shallow Water Equations 2 A New Reconstruction at the Almost Dry Cells 3 Positivity Preserving and Well-Balancing 4 Numerical Experiments 5 Conclusion and Future Worker 6 Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 2 / 38

  3. Governing Equations 1 A Central-Upwind Scheme for the Shallow Water Equations 2 A New Reconstruction at the Almost Dry Cells 3 Positivity Preserving and Well-Balancing 4 Numerical Experiments 5 Conclusion and Future Worker 6 Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 3 / 38

  4. Saint-Venant system of shallow water equations Notations: h ( x , t ) is the fluid depth, u ( x , t ) is the velocity, g is the gravitational constant, B ( x ) represents the bottom topography. Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 4 / 38

  5. Saint-Venant system of shallow water equations Notations: h ( x , t ) is the fluid depth, u ( x , t ) is the velocity, g is the gravitational constant, B ( x ) represents the bottom topography. In one dimension, the Saint-Venant system reads:   h t + ( hu ) x = 0 , � 2 gh 2 � hu 2 + 1  ( hu ) t + x = − ghB x , Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 4 / 38

  6. Saint-Venant system of shallow water equations Notations: h ( x , t ) is the fluid depth, u ( x , t ) is the velocity, g is the gravitational constant, B ( x ) represents the bottom topography. In one dimension, the Saint-Venant system reads:   h t + ( hu ) x = 0 , � 2 gh 2 � hu 2 + 1  ( hu ) t + x = − ghB x , subject to the initial conditions h ( x , 0) = h 0 ( x ) , u ( x , 0) = u 0 ( x ) , Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 4 / 38

  7. Numerical difficulties Figure: Numerical storm over lake Rursee, produced by a naive finite volume scheme Quasi steady solutions, Coarse grid, Numerical storm etc. Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 5 / 38

  8. Numerical difficulties w B j ˜ B B x j − 1 x j + 1 2 2 Quasi steady solutions, Coarse grid, Numerical storm etc. Solution: Well-balanced scheme u = 0 , w := h + B = Const . Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 6 / 38

  9. Numerical difficulties w B j ˜ B B x j − 1 x j + 1 2 2 Quasi steady solutions, Coarse grid, Numerical storm etc. Solution: Well-balanced scheme u = 0 , w := h + B = Const . dry areas (island, shore). Lose strictly hyperbolic in the dry areas ( h = 0): u ± √ gh ; The calculation will simply due to h < 0 break down. Solution: a positive preserving scheme h ≥ 0 Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 6 / 38

  10. Numerical difficulties w B j ˜ B B x j − 1 x j + 1 2 2 Quasi steady solutions, Coarse grid, Numerical storm etc. Solution: Well-balanced scheme u = 0 , w := h + B = Const . dry areas (island, shore). Lose strictly hyperbolic in the dry areas ( h = 0): u ± √ gh ; The calculation will simply due to h < 0 break down. Solution: a positive preserving scheme h ≥ 0 “dry lake at rest” steady state: hu = 0 , h = 0. Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 6 / 38

  11. Governing Equations 1 A Central-Upwind Scheme for the Shallow Water Equations 2 A New Reconstruction at the Almost Dry Cells 3 Positivity Preserving and Well-Balancing 4 Numerical Experiments 5 Conclusion and Future Worker 6 Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 7 / 38

  12. Overview of KP scheme: Kurganov and Petrova, 2007 w B j ˜ B B x j − 1 x j + 1 2 2 Bottom is Continuous, piecewise linear approximated by � B � � x − x j − 1 � B ( x ) = B j − 1 2 + 2 − B j − 1 · 2 , 2 ≤ x ≤ x j + 1 2 . B j + 1 x j − 1 ∆ x 2 where B ( x j + 1 2 + 0) + B ( x j + 1 2 − 0) 2 := , B j + 1 2 then � B j + 1 2 + B j − 1 1 B j := � � 2 B ( x j ) = B ( x ) dx = . ∆ x 2 I j Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 8 / 38

  13. Central-upwind semi-discretization Cell averages of U := ( w , hu ) T is defined � 1 U j ( t ) ≈ U ( x , t ) dx . ∆ x I j Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 9 / 38

  14. Central-upwind semi-discretization Cell averages of U := ( w , hu ) T is defined � 1 U j ( t ) ≈ U ( x , t ) dx . ∆ x I j Time-dependent ODEs (SSP-RK-3) H j + 1 2 ( t ) − H j − 1 2 ( t ) d dt U j ( t ) = − + S j ( t ) , ∆ x Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 9 / 38

  15. Central-upwind semi-discretization Cell averages of U := ( w , hu ) T is defined � 1 U j ( t ) ≈ U ( x , t ) dx . ∆ x I j Time-dependent ODEs (SSP-RK-3) H j + 1 2 ( t ) − H j − 1 2 ( t ) d dt U j ( t ) = − + S j ( t ) , ∆ x the cell averages of the source term: � 1 S := (0 , − ghB x ) T . S j ( t ) ≈ S ( U ( x , t ) , B ( x )) dx , ∆ x I j i.e 2 − B j − 1 B j + 1 (2) S ( t ) := − gh j 2 . j ∆ x Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 9 / 38

  16. central-upwind numerical fluxes The central-upwind numerical fluxes: a + 2 F ( U − 2 ) − a − 2 F ( U + 2 , B j + 1 2 , B j + 1 2 ) j + 1 j + 1 j + 1 j + 1 2 ( t ) = H j + 1 a + 2 − a − j + 1 j + 1 2 a + 2 a − � � j + 1 j + 1 U + 2 − U − + 2 , a + 2 − a − j + 1 j + 1 2 j + 1 j + 1 2 where we use the following flux notation: � � T hu , ( hu ) 2 w − B + g 2 ( w − B ) 2 F ( U , B ) := . Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 10 / 38

  17. central-upwind numerical fluxes The central-upwind numerical fluxes: a + 2 F ( U − 2 ) − a − 2 F ( U + 2 , B j + 1 2 , B j + 1 2 ) j + 1 j + 1 j + 1 j + 1 2 ( t ) = H j + 1 a + 2 − a − j + 1 j + 1 2 a + 2 a − � � j + 1 j + 1 U + 2 − U − + 2 , a + 2 − a − j + 1 j + 1 2 j + 1 j + 1 2 where we use the following flux notation: � � T hu , ( hu ) 2 w − B + g 2 ( w − B ) 2 F ( U , B ) := . the local speeds a ± 2 in numerical flux are obtained using the eigenvalues of j + 1 the Jacobian ∂ F ∂ U as follows: � � � � a + u + gh + 2 , u − gh − 2 = max 2 + 2 + 2 , 0 , j + 1 j + 1 j + 1 j + 1 j + 1 � � � � a − u + gh + 2 , u − gh − 2 = min 2 − 2 − 2 , 0 . j + 1 j + 1 j + 1 j + 1 j + 1 Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 10 / 38

  18. Initial date reconstruction(Surface Gradient Method) piecewise linear reconstruction q stands for w and u respectively. � q ( x ) := q j + ( q x ) j ( x − x j ) , x j − 1 2 < x < x j + 1 2 , Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 11 / 38

  19. Initial date reconstruction(Surface Gradient Method) piecewise linear reconstruction q stands for w and u respectively. � q ( x ) := q j + ( q x ) j ( x − x j ) , x j − 1 2 < x < x j + 1 2 , The generalized minmod limiter: � � θ q j − q j − 1 , q j +1 − q j − 1 , θ q j +1 − q j ( q x ) j = minmod , θ ∈ [1 , 2] , ∆ x 2∆ x ∆ x with  min j { z j } , if z j > 0 ∀ j ,  minmod ( z 1 , z 2 , ... ) := max j { z j } , if z j < 0 ∀ j ,  0 , otherwise , Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 11 / 38

  20. Initial date reconstruction(Surface Gradient Method) piecewise linear reconstruction q stands for w and u respectively. � q ( x ) := q j + ( q x ) j ( x − x j ) , x j − 1 2 < x < x j + 1 2 , The generalized minmod limiter: � � θ q j − q j − 1 , q j +1 − q j − 1 , θ q j +1 − q j ( q x ) j = minmod , θ ∈ [1 , 2] , ∆ x 2∆ x ∆ x with  min j { z j } , if z j > 0 ∀ j ,  minmod ( z 1 , z 2 , ... ) := max j { z j } , if z j < 0 ∀ j ,  0 , otherwise , average velocity is defined as with ǫ = 10 − 9 � ( hu ) j / h j , if h j ≥ ǫ, u j := 0 , otherwise . Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 11 / 38

  21. Initial date reconstruction(Surface Gradient Method) piecewise linear reconstruction q stands for w and u respectively. � q ( x ) := q j + ( q x ) j ( x − x j ) , x j − 1 2 < x < x j + 1 2 , The generalized minmod limiter: � � θ q j − q j − 1 , q j +1 − q j − 1 , θ q j +1 − q j ( q x ) j = minmod , θ ∈ [1 , 2] , ∆ x 2∆ x ∆ x with  min j { z j } , if z j > 0 ∀ j ,  minmod ( z 1 , z 2 , ... ) := max j { z j } , if z j < 0 ∀ j ,  0 , otherwise , average velocity is defined as with ǫ = 10 − 9 � ( hu ) j / h j , if h j ≥ ǫ, u j := 0 , otherwise . water height is recontructed by h ± 2 = w ± 2 − B j + 1 2 . j + 1 j + 1 Guoxian Chen (WHU) well-balanced reconstruction of wet/dry fronts May 24, 2014 11 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend