a quantum picture of de sitter spacetime
play

A quantum picture of de Sitter spacetime Sebastian Zell Work with - PowerPoint PPT Presentation

A quantum picture of de Sitter spacetime Sebastian Zell Work with Gia Dvali and C esar Gomez MPP Project Review 2015 14 th December 2015 1 Corpuscular approach Idea: The world is fundamentally quantum Classical solution = collective


  1. A quantum picture of de Sitter spacetime Sebastian Zell Work with Gia Dvali and C´ esar Gomez MPP Project Review 2015 14 th December 2015 1

  2. Corpuscular approach • Idea: The world is fundamentally quantum ⇒ Classical solution = collective effect of appropriate quanta (corpuscules) 1 1 G. Dvali and C. Gomez, Quantum Compositeness of Gravity: Black Holes, AdS and Inflation , arXiv:1312.4795 . 2

  3. Corpuscular approach • Idea: The world is fundamentally quantum ⇒ Classical solution = collective effect of appropriate quanta (corpuscules) 1 • Tehseen’s talk: Solitons as corpuscular bound states 2 ⇒ Topological properties determined by number of corpuscules 1 G. Dvali and C. Gomez, Quantum Compositeness of Gravity: Black Holes, AdS and Inflation , arXiv:1312.4795 . 2 G. Dvali, C. Gomez, L. Gr¨ unding and T. Rug, Towards a Quantum Theory of Solitons , arXiv:1508.03074 . 2

  4. Outline The quantum state of de Sitter 1 Application to Particle production 2 Outlook 3 3

  5. The quantum state of de Sitter Application to Particle production Outlook De Sitter metric • Cosmological constant Λ ( ∝ H 2 ) 4

  6. The quantum state of de Sitter Application to Particle production Outlook De Sitter metric • Cosmological constant Λ ( ∝ H 2 ) • Metric for small times: d s 2 = (1 + Λ t 2 )( d t 2 − d # x 2 ) + . . . » 4

  7. The quantum state of de Sitter Application to Particle production Outlook De Sitter metric • Cosmological constant Λ ( ∝ H 2 ) • Metric for small times: d s 2 = (1 + Λ t 2 )( d t 2 − d # x 2 ) + . . . » • Canonically normalized Newtonian potential Φ = M p 2 Λ t 2 4

  8. The quantum state of de Sitter Application to Particle production Outlook De Sitter metric • Cosmological constant Λ ( ∝ H 2 ) • Metric for small times: d s 2 = (1 + Λ t 2 )( d t 2 − d # x 2 ) + . . . » • Canonically normalized Newtonian potential Φ = M p 2 Λ t 2 • Goal: Obtain Φ as classical limit of a graviton bound state Λ 4

  9. The quantum state of de Sitter Application to Particle production Outlook Bound-state gravitons • Two different Fock spaces: a † - ˆ k creates free gravitons. # » - ˆ b † k creates bound-state gravitons. # » 5

  10. The quantum state of de Sitter Application to Particle production Outlook Bound-state gravitons • Two different Fock spaces: a † - ˆ k creates free gravitons. # » - ˆ b † k creates bound-state gravitons. # » Claim √ Bound-state graviton ( m = 0) = Free graviton ( m = Λ) 5

  11. The quantum state of de Sitter Application to Particle production Outlook Bound-state gravitons • Two different Fock spaces: a † - ˆ k creates free gravitons. # » - ˆ b † k creates bound-state gravitons. # » Claim √ Bound-state graviton ( m = 0) = Free graviton ( m = Λ) • Conditions on the quantum state | N Λ � : - Spatially homogeneous ⇒ 0 momentum - Maximally classical ⇒ Coherent state 5

  12. The quantum state of de Sitter Application to Particle production Outlook Bound-state gravitons • Two different Fock spaces: a † - ˆ k creates free gravitons. # » - ˆ b † k creates bound-state gravitons. # » Claim √ Bound-state graviton ( m = 0) = Free graviton ( m = Λ) • Conditions on the quantum state | N Λ � : - Spatially homogeneous ⇒ 0 momentum - Maximally classical ⇒ Coherent state 0 b † • Only free parameter left: N ∝ � N Λ | b # 0 | N Λ � » # » 5

  13. The quantum state of de Sitter Application to Particle production Outlook Classical limit • Expectation value in Hubble patch: � N Λ | ˆ Φ | N Λ � 6

  14. The quantum state of de Sitter Application to Particle production Outlook Classical limit • Expectation value in Hubble patch: � k t e i # » x + h.c. � � � N Λ | ˆ ˆ k # » k e − i ω # Φ | N Λ � = � N Λ | b # » | N Λ � » # » k 6

  15. The quantum state of de Sitter Application to Particle production Outlook Classical limit • Expectation value in Hubble patch: � k t e i # » x + h.c. � � � N Λ | ˆ ˆ k # » k e − i ω # Φ | N Λ � = � N Λ | b # » | N Λ � » # » k √ � √ √ Λ t + h.c. � Ne − i = Λ 6

  16. The quantum state of de Sitter Application to Particle production Outlook Classical limit • Expectation value in Hubble patch: � k t e i # » x + h.c. � � � N Λ | ˆ ˆ k # » k e − i ω # Φ | N Λ � = � N Λ | b # » | N Λ � » # » k √ � √ √ Λ t + h.c. � Ne − i = Λ √ � 1 + 1 � 2Λ t 2 + O (Λ 2 t 4 ) = Λ N 6

  17. The quantum state of de Sitter Application to Particle production Outlook Classical limit • Expectation value in Hubble patch: � k t e i # » x + h.c. � � � N Λ | ˆ ˆ k # » k e − i ω # Φ | N Λ � = � N Λ | b # » | N Λ � » # » k √ � √ √ Λ t + h.c. � Ne − i = Λ √ � 1 + 1 � 2Λ t 2 + O (Λ 2 t 4 ) = Λ N ⇒ Choose N = M 2 p Λ 6

  18. The quantum state of de Sitter Application to Particle production Outlook Classical limit • Expectation value in Hubble patch: � k t e i # » x + h.c. � � � N Λ | ˆ ˆ k # » k e − i ω # Φ | N Λ � = � N Λ | b # » | N Λ � » # » k √ � √ √ Λ t + h.c. � Ne − i = Λ √ � 1 + 1 � 2Λ t 2 + O (Λ 2 t 4 ) = Λ N ⇒ Choose N = M 2 p Λ ⇒ Quantum state | N Λ � reproduces classical metric Φ: � N Λ | ˆ Φ | N Λ � = Φ 6

  19. The quantum state of de Sitter Application to Particle production Outlook Classical limit • Expectation value in Hubble patch: � k t e i # » x + h.c. � � � N Λ | ˆ ˆ k # » k e − i ω # Φ | N Λ � = � N Λ | b # » | N Λ � » # » k √ � √ √ Λ t + h.c. � Ne − i = Λ √ � 1 + 1 � 2Λ t 2 + O (Λ 2 t 4 ) = Λ N ⇒ Choose N = M 2 p Λ ⇒ Quantum state | N Λ � reproduces classical metric Φ: � N Λ | ˆ Φ | N Λ � = Φ • Representation of Φ independent of source 6

  20. The quantum state of de Sitter Application to Particle production Outlook Decay constant ( E 1 , # p 1 ) » ( E 2 , # » p 2 ) N { } N ′ = N − 1 7

  21. The quantum state of de Sitter Application to Particle production Outlook Decay constant ( E 1 , # p 1 ) » ( E 2 , # » p 2 ) N { } N ′ = N − 1 √ � 1 − 5 � Γ ∝ Λ 4 N 7

  22. The quantum state of de Sitter Application to Particle production Outlook Decay constant ( E 1 , # p 1 ) » ( E 2 , # » p 2 ) N { } N ′ = N − 1 √ � 1 − 5 � Γ ∝ Λ 4 N • Reinterpretation (already in the semi-classical limit N → ∞ ): Energy transfer = graviton energy √ E 1 + E 2 = Λ 7

  23. The quantum state of de Sitter Application to Particle production Outlook Decay constant ( E 1 , # p 1 ) » ( E 2 , # » p 2 ) N { } N ′ = N − 1 √ � 1 − 5 � Γ ∝ Λ 4 N • Reinterpretation (already in the semi-classical limit N → ∞ ): Energy transfer = graviton energy √ E 1 + E 2 = Λ • Quantum correction because of back-reaction ( N ′ � = N ) 7

  24. The quantum state of de Sitter Application to Particle production Outlook Final state of the metric • Metric changes because of back-reaction (Inaccessible in semi-classical limit N → ∞ ) 8

  25. The quantum state of de Sitter Application to Particle production Outlook Final state of the metric • Metric changes because of back-reaction (Inaccessible in semi-classical limit N → ∞ ) • Initial de Sitter metric only valid as long as N − N ′ ≪ N ⇒ Quantum break time 3 : ∆ t ≈ N Γ − 1 = M 2 p Λ 1 . 5 3 G. Dvali and C. Gomez, Quantum Exclusion of Positive Cosmological Constant? , arXiv:1412.8077 . 8

  26. The quantum state of de Sitter Application to Particle production Outlook Final state of the metric • Metric changes because of back-reaction (Inaccessible in semi-classical limit N → ∞ ) • Initial de Sitter metric only valid as long as N − N ′ ≪ N ⇒ Quantum break time 3 : ∆ t ≈ N Γ − 1 = M 2 p Λ 1 . 5 ⇒ Final state without classical metric description? 3 G. Dvali and C. Gomez, Quantum Exclusion of Positive Cosmological Constant? , arXiv:1412.8077 . 8

  27. The quantum state of de Sitter Application to Particle production Outlook Outlook Summary • De Sitter metric as classical limit of graviton state • Particle production because of graviton decay • 1 / N -correction of the rate caused by back-reaction • Quantum evolution of the metric 9

  28. The quantum state of de Sitter Application to Particle production Outlook Outlook Summary • De Sitter metric as classical limit of graviton state • Particle production because of graviton decay • 1 / N -correction of the rate caused by back-reaction • Quantum evolution of the metric Future research • Minkowski as graviton state • Model final de Sitter state • Inflationary scenarios • Other metrics such as AdS 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend