towards de sitter solutions
play

Towards de Sitter solutions Introduction De Sitter sol. of string - PowerPoint PPT Presentation

David ANDRIOT Towards de Sitter solutions Introduction De Sitter sol. of string theory via non-geometry Field redefinition Conclusion David ANDRIOT ASC, LMU, Munich, Germany arXiv:1003.3774 by D. A., E. Goi, R. Minasian, M. Petrini


  1. � � Very difficult to get de Sitter solutions of 10D SUGRA. Several reasons: David ANDRIOT technical: SUSY is broken ⇒ resolution is difficult. inherent to 10D SUGRA: generally R 4 ≤ 0 ... Introduction not talking of stability. De Sitter sol. Field redefinition 4D perspective: no-go theorems: V | 0 ≤ 0 Conclusion (and ways of circumventing them) hep-th/0007018 by J. M. Maldacena, C. Núñez arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark arXiv:0810.5328 by S. S. Haque, G. Shiu, B. Underwood, T. Van Riet In particular, non-geometric terms: specific terms in the potential V ( ϕ ) of 4D SUGRA. + they generically help to get dS solutions of 4D SUGRA ! arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno ֒ → use them to get dS solutions of 10D SUGRA? Major issue: 10D origin of non-geometric terms? gauging � SUGRA 4D V non − geo . ( ϕ ) SUGRA 4D V geo . ( ϕ )

  2. � � Very difficult to get de Sitter solutions of 10D SUGRA. Several reasons: David ANDRIOT technical: SUSY is broken ⇒ resolution is difficult. inherent to 10D SUGRA: generally R 4 ≤ 0 ... Introduction not talking of stability. De Sitter sol. Field redefinition 4D perspective: no-go theorems: V | 0 ≤ 0 Conclusion (and ways of circumventing them) hep-th/0007018 by J. M. Maldacena, C. Núñez arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark arXiv:0810.5328 by S. S. Haque, G. Shiu, B. Underwood, T. Van Riet In particular, non-geometric terms: specific terms in the potential V ( ϕ ) of 4D SUGRA. + they generically help to get dS solutions of 4D SUGRA ! arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno ֒ → use them to get dS solutions of 10D SUGRA? Major issue: 10D origin of non-geometric terms? SUGRA 10D : 4D × 6D M compactif . on M gauging � SUGRA 4D V non − geo . ( ϕ ) SUGRA 4D V geo . ( ϕ )

  3. � � Very difficult to get de Sitter solutions of 10D SUGRA. Several reasons: David ANDRIOT technical: SUSY is broken ⇒ resolution is difficult. inherent to 10D SUGRA: generally R 4 ≤ 0 ... Introduction not talking of stability. De Sitter sol. Field redefinition 4D perspective: no-go theorems: V | 0 ≤ 0 Conclusion (and ways of circumventing them) hep-th/0007018 by J. M. Maldacena, C. Núñez arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark arXiv:0810.5328 by S. S. Haque, G. Shiu, B. Underwood, T. Van Riet In particular, non-geometric terms: specific terms in the potential V ( ϕ ) of 4D SUGRA. + they generically help to get dS solutions of 4D SUGRA ! arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno ֒ → use them to get dS solutions of 10D SUGRA? Major issue: 10D origin of non-geometric terms? SUGRA 10D : 4D × 6D M ?? compactif . on M gauging � SUGRA 4D V non − geo . ( ϕ ) SUGRA 4D V geo . ( ϕ )

  4. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT Introduction De Sitter sol. Field redefinition Conclusion

  5. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Introduction De Sitter sol. Field redefinition Conclusion

  6. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition Conclusion

  7. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars.

  8. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars. → 10D origin of Q and R -fluxes in NSNS sector? ֒

  9. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars. → 10D origin of Q and R -fluxes in NSNS sector? ֒ 10D non-geometry: different. Relation to 4D unclear.

  10. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars. → 10D origin of Q and R -fluxes in NSNS sector? ֒ 10D non-geometry: different. Relation to 4D unclear. A 10D non-geometric config. of fields: not single-valued, global issues, M not a standard compact manifold (see talk of Dieter Lüst) → compactification, integration over M ? ֒

  11. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars. → 10D origin of Q and R -fluxes in NSNS sector? ֒ 10D non-geometry: different. Relation to 4D unclear. A 10D non-geometric config. of fields: not single-valued, global issues, M not a standard compact manifold (see talk of Dieter Lüst) → compactification, integration over M ? ֒ Here: progress in relating 10D/4D non-geometry A way to overcome these two issues:

  12. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars. → 10D origin of Q and R -fluxes in NSNS sector? ֒ 10D non-geometry: different. Relation to 4D unclear. A 10D non-geometric config. of fields: not single-valued, global issues, M not a standard compact manifold (see talk of Dieter Lüst) → compactification, integration over M ? ֒ Here: progress in relating 10D/4D non-geometry A way to overcome these two issues: - field redefinition on NSNS fields ⇒ Q , R in 10D Lag.

  13. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars. → 10D origin of Q and R -fluxes in NSNS sector? ֒ 10D non-geometry: different. Relation to 4D unclear. A 10D non-geometric config. of fields: not single-valued, global issues, M not a standard compact manifold (see talk of Dieter Lüst) → compactification, integration over M ? ֒ Here: progress in relating 10D/4D non-geometry A way to overcome these two issues: - field redefinition on NSNS fields ⇒ Q , R in 10D Lag. - new fields globally defined ⇒ compactify, get V ( ϕ ) �

  14. 10D origin of 4D non-geometric terms: two problems: David ANDRIOT g mn , ˆ φ, ˆ B mn , ˆ H kmn = 3 ∂ [ k ˆ Focus on NSNS sector: ˆ B mn ] . Compactification over M Introduction → in 4D V ( ϕ ), terms generated by ˆ mn | 0 , ˆ Γ k De Sitter sol. H kmn | 0 . ֒ Field redefinition But 4D non-geo. terms generated by “fluxes”: Q kmn , R kmn Conclusion + different dependence on scalars. → 10D origin of Q and R -fluxes in NSNS sector? ֒ 10D non-geometry: different. Relation to 4D unclear. A 10D non-geometric config. of fields: not single-valued, global issues, M not a standard compact manifold (see talk of Dieter Lüst) → compactification, integration over M ? ֒ Here: progress in relating 10D/4D non-geometry A way to overcome these two issues: - field redefinition on NSNS fields ⇒ Q , R in 10D Lag. - new fields globally defined ⇒ compactify, get V ( ϕ ) � For dS solutions: extend field redef. to full 10D SUGRA.

  15. David ANDRIOT Introduction De Sitter sol. Field redefinition Conclusion Plan: de Sitter solutions of IIA SUGRA From 10D and 4D: generally Λ ≤ 0 4D non-geometric terms ⇒ help for de Sitter. Field redefinition ⇒ Q , R -fluxes in 10D. Compactification ⇒ V ( ϕ ) � .

  16. De Sitter solutions of 10D and 4D SUGRA David ANDRIOT 10D discussion Introduction 10D IIA SUGRA, with O6-planes/D6-branes De Sitter sol. 10D (common set-up to look for dS solutions). 4D geometric Bosonic content: NSNS sector, RR sector: F 0 , F 2 , (no F 4 , F 6 ). 4D non-geometric Field redefinition O6/D6 source of F 2 . Conclusion

  17. De Sitter solutions of 10D and 4D SUGRA David ANDRIOT 10D discussion Introduction 10D IIA SUGRA, with O6-planes/D6-branes De Sitter sol. 10D (common set-up to look for dS solutions). 4D geometric Bosonic content: NSNS sector, RR sector: F 0 , F 2 , (no F 4 , F 6 ). 4D non-geometric Field redefinition O6/D6 source of F 2 . � Conclusion � 1 d 10 x S IIA = | ˆ g 10 | [ L NSNS + L RR + L sources ] , 2 κ 2 φ | 2 − 1 L NSNS = e − 2 ˆ φ ( � R 10 + 4 |∇ ˆ 2 | ˆ H | 2 ) , 2( | F 0 | 2 + | F 2 | 2 ) , F m 1 ... m p F m 1 ... m p L RR = − 1 = | F p | 2 . p !

  18. De Sitter solutions of 10D and 4D SUGRA David ANDRIOT 10D discussion Introduction 10D IIA SUGRA, with O6-planes/D6-branes De Sitter sol. 10D (common set-up to look for dS solutions). 4D geometric Bosonic content: NSNS sector, RR sector: F 0 , F 2 , (no F 4 , F 6 ). 4D non-geometric Field redefinition O6/D6 source of F 2 . � Conclusion � 1 d 10 x S IIA = | ˆ g 10 | [ L NSNS + L RR + L sources ] , 2 κ 2 φ | 2 − 1 L NSNS = e − 2 ˆ φ ( � R 10 + 4 |∇ ˆ 2 | ˆ H | 2 ) , 2( | F 0 | 2 + | F 2 | 2 ) , F m 1 ... m p F m 1 ... m p L RR = − 1 = | F p | 2 . p ! Derive 10D e.o.m.

  19. De Sitter solutions of 10D and 4D SUGRA David ANDRIOT 10D discussion Introduction 10D IIA SUGRA, with O6-planes/D6-branes De Sitter sol. 10D (common set-up to look for dS solutions). 4D geometric Bosonic content: NSNS sector, RR sector: F 0 , F 2 , (no F 4 , F 6 ). 4D non-geometric Field redefinition O6/D6 source of F 2 . � Conclusion � 1 d 10 x S IIA = | ˆ g 10 | [ L NSNS + L RR + L sources ] , 2 κ 2 φ | 2 − 1 L NSNS = e − 2 ˆ φ ( � R 10 + 4 |∇ ˆ 2 | ˆ H | 2 ) , 2( | F 0 | 2 + | F 2 | 2 ) , F m 1 ... m p F m 1 ... m p L RR = − 1 = | F p | 2 . p ! Derive 10D e.o.m. Compactification ansatz: d s 2 10 = d s 2 4 + d s 2 6 (no warp factor), φ = g s . non-trivial fluxes only along M , constant dilaton e ˆ

  20. De Sitter solutions of 10D and 4D SUGRA David ANDRIOT 10D discussion Introduction 10D IIA SUGRA, with O6-planes/D6-branes De Sitter sol. 10D (common set-up to look for dS solutions). 4D geometric Bosonic content: NSNS sector, RR sector: F 0 , F 2 , (no F 4 , F 6 ). 4D non-geometric Field redefinition O6/D6 source of F 2 . � Conclusion � 1 d 10 x S IIA = | ˆ g 10 | [ L NSNS + L RR + L sources ] , 2 κ 2 φ | 2 − 1 L NSNS = e − 2 ˆ φ ( � R 10 + 4 |∇ ˆ 2 | ˆ H | 2 ) , 2( | F 0 | 2 + | F 2 | 2 ) , F m 1 ... m p F m 1 ... m p L RR = − 1 = | F p | 2 . p ! Derive 10D e.o.m. Compactification ansatz: d s 2 10 = d s 2 4 + d s 2 6 (no warp factor), φ = g s . non-trivial fluxes only along M , constant dilaton e ˆ Combine (4D, 6D) trace of Einstein and dilaton e.o.m.

  21. De Sitter solutions of 10D and 4D SUGRA David ANDRIOT 10D discussion Introduction 10D IIA SUGRA, with O6-planes/D6-branes De Sitter sol. 10D (common set-up to look for dS solutions). 4D geometric Bosonic content: NSNS sector, RR sector: F 0 , F 2 , (no F 4 , F 6 ). 4D non-geometric Field redefinition O6/D6 source of F 2 . � Conclusion � 1 d 10 x S IIA = | ˆ g 10 | [ L NSNS + L RR + L sources ] , 2 κ 2 φ | 2 − 1 L NSNS = e − 2 ˆ φ ( � R 10 + 4 |∇ ˆ 2 | ˆ H | 2 ) , 2( | F 0 | 2 + | F 2 | 2 ) , F m 1 ... m p F m 1 ... m p L RR = − 1 = | F p | 2 . p ! Derive 10D e.o.m. Compactification ansatz: d s 2 10 = d s 2 4 + d s 2 6 (no warp factor), φ = g s . non-trivial fluxes only along M , constant dilaton e ˆ Combine (4D, 6D) trace of Einstein and dilaton e.o.m.: � � � H | 2 � 3Λ = 3 R 4 = 1 = 1 R 6 − 1 s | F 0 | 2 − | ˆ � − � g 2 2 g 2 s | F 2 | 2 4 2 3

  22. David ANDRIOT Introduction De Sitter sol. Obtain de Sitter solution: 10D � � � H | 2 � 4D geometric 3Λ = 3 R 4 = 1 = 1 R 6 − 1 s | F 0 | 2 − | ˆ 4D non-geometric � g 2 − � 2 g 2 s | F 2 | 2 > 0 Field redefinition 4 2 3 Conclusion

  23. David ANDRIOT Introduction De Sitter sol. Obtain de Sitter solution: 10D � � � H | 2 � 4D geometric 3Λ = 3 R 4 = 1 = 1 R 6 − 1 s | F 0 | 2 − | ˆ 4D non-geometric � g 2 − � 2 g 2 s | F 2 | 2 > 0 Field redefinition 4 2 3 Conclusion → need at least F 0 � = 0, � R 6 < 0 ! ֒ hep-th/0007018 by J. M. Maldacena, C. Núñez arXiv:0810.5328 by S. S. Haque, G. Shiu, B. Underwood, T. Van Riet

  24. David ANDRIOT Introduction De Sitter sol. Obtain de Sitter solution: 10D � � � H | 2 � 4D geometric 3Λ = 3 R 4 = 1 = 1 R 6 − 1 s | F 0 | 2 − | ˆ 4D non-geometric � g 2 − � 2 g 2 s | F 2 | 2 > 0 Field redefinition 4 2 3 Conclusion → need at least F 0 � = 0, � R 6 < 0 ! ֒ hep-th/0007018 by J. M. Maldacena, C. Núñez arXiv:0810.5328 by S. S. Haque, G. Shiu, B. Underwood, T. Van Riet But F 0 and ˆ H not independent ( B -field e.o.m., F 2 B.I.)...

  25. David ANDRIOT Introduction De Sitter sol. Obtain de Sitter solution: 10D � � � H | 2 � 4D geometric 3Λ = 3 R 4 = 1 = 1 R 6 − 1 s | F 0 | 2 − | ˆ 4D non-geometric � g 2 − � 2 g 2 s | F 2 | 2 > 0 Field redefinition 4 2 3 Conclusion → need at least F 0 � = 0, � R 6 < 0 ! ֒ hep-th/0007018 by J. M. Maldacena, C. Núñez arXiv:0810.5328 by S. S. Haque, G. Shiu, B. Underwood, T. Van Riet But F 0 and ˆ H not independent ( B -field e.o.m., F 2 B.I.)... → In most of the examples: AdS, Minkowski. ֒

  26. David ANDRIOT Introduction De Sitter sol. Obtain de Sitter solution: 10D � � � H | 2 � 4D geometric 3Λ = 3 R 4 = 1 = 1 R 6 − 1 s | F 0 | 2 − | ˆ 4D non-geometric � g 2 − � 2 g 2 s | F 2 | 2 > 0 Field redefinition 4 2 3 Conclusion → need at least F 0 � = 0, � R 6 < 0 ! ֒ hep-th/0007018 by J. M. Maldacena, C. Núñez arXiv:0810.5328 by S. S. Haque, G. Shiu, B. Underwood, T. Van Riet But F 0 and ˆ H not independent ( B -field e.o.m., F 2 B.I.)... → In most of the examples: AdS, Minkowski. ֒ F 4 , F 6 do not help: enter with a minus... de Sitter not favored.

  27. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT Introduction De Sitter sol. 10D 4D geometric 4D non-geometric Field redefinition Conclusion

  28. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT φ → e ˆ φ (0) e ˆ ˆ ϕ , σ = ρ 3 ϕ , ˆ Introduction g (0) H , F p → ˆ 2 e − ˆ H (0) , F (0) g 6 ij → ˆ ˆ 6 ij ρ , e p De Sitter sol. 10D 4D geometric 4D non-geometric Field redefinition Conclusion

  29. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT φ → e ˆ φ (0) e ˆ ˆ ϕ , σ = ρ 3 ϕ , ˆ Introduction g (0) H , F p → ˆ 2 e − ˆ H (0) , F (0) g 6 ij → ˆ ˆ 6 ij ρ , e p De Sitter sol. 10D Compactification procedure: from 10D S IIA , get 4D geometric � � � 4D non-geometric � 4 + kin − V Field redefinition � S = M 2 d 4 x R E g E | ˆ 4 | 4 M 2 Conclusion 4 V ( ρ, σ ) = σ − 2 ( ρ − 1 V R + ρ − 3 V H ) + ρ 3 σ − 4 ( V F 0 + ρ − 2 V F 2 ) − σ − 3 V sources M 2 4 R 6 , V H = 1 2 | H | 2 , V F p = 1 s | F p | 2 . where V R = − � 2 g 2 arXiv:0712.1196 by E. Silverstein

  30. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT φ → e ˆ φ (0) e ˆ ˆ ϕ , σ = ρ 3 ϕ , ˆ Introduction g (0) H , F p → ˆ 2 e − ˆ H (0) , F (0) g 6 ij → ˆ ˆ 6 ij ρ , e p De Sitter sol. 10D Compactification procedure: from 10D S IIA , get 4D geometric � � � 4D non-geometric � 4 + kin − V 1 Field redefinition � S = M 2 d 4 x R E g E | ˆ 4 | ⇒ Λ = V | 0 4 M 2 2 M 2 Conclusion 4 4 V ( ρ, σ ) = σ − 2 ( ρ − 1 V R + ρ − 3 V H ) + ρ 3 σ − 4 ( V F 0 + ρ − 2 V F 2 ) − σ − 3 V sources M 2 4 R 6 , V H = 1 2 | H | 2 , V F p = 1 s | F p | 2 . where V R = − � 2 g 2 arXiv:0712.1196 by E. Silverstein

  31. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT φ → e ˆ φ (0) e ˆ ˆ ϕ , σ = ρ 3 ϕ , ˆ Introduction g (0) H , F p → ˆ 2 e − ˆ H (0) , F (0) ˆ g 6 ij → ˆ 6 ij ρ , e p De Sitter sol. 10D Compactification procedure: from 10D S IIA , get 4D geometric � � � 4D non-geometric � 4 + kin − V 1 Field redefinition � S = M 2 d 4 x R E g E | ˆ 4 | ⇒ Λ = V | 0 4 M 2 2 M 2 Conclusion 4 4 V ( ρ, σ ) = σ − 2 ( ρ − 1 V R + ρ − 3 V H ) + ρ 3 σ − 4 ( V F 0 + ρ − 2 V F 2 ) − σ − 3 V sources M 2 4 R 6 , V H = 1 2 | H | 2 , V F p = 1 s | F p | 2 . where V R = − � 2 g 2 arXiv:0712.1196 by E. Silverstein ∂ V ∂ρ | 0 = ∂ V Get V | 0 ? Extremize the potential: ∂σ | 0 = 0.

  32. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT φ → e ˆ φ (0) e ˆ ˆ ϕ , σ = ρ 3 ϕ , ˆ Introduction g (0) H , F p → ˆ 2 e − ˆ H (0) , F (0) ˆ g 6 ij → ˆ 6 ij ρ , e p De Sitter sol. 10D Compactification procedure: from 10D S IIA , get 4D geometric � � � 4D non-geometric � 4 + kin − V 1 Field redefinition � S = M 2 d 4 x R E g E | ˆ 4 | ⇒ Λ = V | 0 4 M 2 2 M 2 Conclusion 4 4 V ( ρ, σ ) = σ − 2 ( ρ − 1 V R + ρ − 3 V H ) + ρ 3 σ − 4 ( V F 0 + ρ − 2 V F 2 ) − σ − 3 V sources M 2 4 R 6 , V H = 1 2 | H | 2 , V F p = 1 s | F p | 2 . where V R = − � 2 g 2 arXiv:0712.1196 by E. Silverstein ∂ V ∂ρ | 0 = ∂ V Get V | 0 ? Extremize the potential: ∂σ | 0 = 0. ֒ → Combine and get 3Λ = 3 V | 0 = V F 0 − V H = 1 3 ( V R − V F 2 ) M 2 2 4

  33. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT φ → e ˆ φ (0) e ˆ ˆ ϕ , σ = ρ 3 ϕ , ˆ Introduction g (0) H , F p → ˆ 2 e − ˆ H (0) , F (0) ˆ g 6 ij → ˆ 6 ij ρ , e p De Sitter sol. 10D Compactification procedure: from 10D S IIA , get 4D geometric � � � 4D non-geometric � 4 + kin − V 1 Field redefinition � S = M 2 d 4 x R E g E | ˆ 4 | ⇒ Λ = V | 0 4 M 2 2 M 2 Conclusion 4 4 V ( ρ, σ ) = σ − 2 ( ρ − 1 V R + ρ − 3 V H ) + ρ 3 σ − 4 ( V F 0 + ρ − 2 V F 2 ) − σ − 3 V sources M 2 4 R 6 , V H = 1 2 | H | 2 , V F p = 1 s | F p | 2 . where V R = − � 2 g 2 arXiv:0712.1196 by E. Silverstein ∂ V ∂ρ | 0 = ∂ V Get V | 0 ? Extremize the potential: ∂σ | 0 = 0. ֒ → Combine and get 3Λ = 3 V | 0 = V F 0 − V H = 1 3 ( V R − V F 2 ) M 2 2 4 Same relations as in 10D... Same difficulty to get de Sitter.

  34. 4D discussion: the scalar potential David V ( ρ, σ ): only consider volume ρ and dilaton σ , always appear. ANDRIOT φ → e ˆ φ (0) e ˆ ˆ ϕ , σ = ρ 3 ϕ , ˆ Introduction g (0) H , F p → ˆ 2 e − ˆ H (0) , F (0) g 6 ij → ˆ ˆ 6 ij ρ , e p De Sitter sol. 10D Compactification procedure: from 10D S IIA , get 4D geometric � � � 4D non-geometric � 4 + kin − V 1 Field redefinition � S = M 2 d 4 x R E g E | ˆ 4 | ⇒ Λ = V | 0 4 M 2 2 M 2 Conclusion 4 4 V ( ρ, σ ) = σ − 2 ( ρ − 1 V R + ρ − 3 V H ) + ρ 3 σ − 4 ( V F 0 + ρ − 2 V F 2 ) − σ − 3 V sources M 2 4 R 6 , V H = 1 2 | H | 2 , V F p = 1 s | F p | 2 . where V R = − � 2 g 2 arXiv:0712.1196 by E. Silverstein ∂ V ∂ρ | 0 = ∂ V Get V | 0 ? Extremize the potential: ∂σ | 0 = 0. ֒ → Combine and get 3Λ = 3 V | 0 = V F 0 − V H = 1 3 ( V R − V F 2 ) M 2 2 4 Same relations as in 10D... Same difficulty to get de Sitter. → Non-geometric terms... ֒

  35. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction De Sitter sol. 10D 4D geometric 4D non-geometric Field redefinition Conclusion

  36. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction Scalar potential: De Sitter sol. 10D 4D geometric V NSNS ∼ ρ − 3 V H + ρ − 1 V R + ρ V Q + ρ 3 V R 4D non-geometric Field redefinition Conclusion arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark

  37. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction Scalar potential: De Sitter sol. 10D 4D geometric V NSNS ∼ ρ − 3 V H + ρ − 1 V R + ρ V Q + ρ 3 V R 4D non-geometric Field redefinition Conclusion arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark With Q , R , and F 4 , F 6 , one gets de Sitter for: ( V F 0 − V H ) + ( V Q − V F 4 ) + 2( V R − V F 6 ) > 0 ( V R − V F 2 ) + 2( V Q − V F 4 ) + 3( V R − V F 6 ) > 0 arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno

  38. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction Scalar potential: De Sitter sol. 10D 4D geometric V NSNS ∼ ρ − 3 V H + ρ − 1 V R + ρ V Q + ρ 3 V R 4D non-geometric Field redefinition Conclusion arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark With Q , R , and F 4 , F 6 , one gets de Sitter for: ( V F 0 − V H ) > 0 ( V R − V F 2 ) > 0 arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno

  39. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction Scalar potential: De Sitter sol. 10D 4D geometric V NSNS ∼ ρ − 3 V H + ρ − 1 V R + ρ V Q + ρ 3 V R 4D non-geometric Field redefinition Conclusion arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark With Q , R , and F 4 , F 6 , one gets de Sitter for: ( V F 0 − V H ) + ( V Q − V F 4 ) + 2( V R − V F 6 ) > 0 ( V R − V F 2 ) + 2( V Q − V F 4 ) + 3( V R − V F 6 ) > 0 arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno

  40. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction Scalar potential: De Sitter sol. 10D 4D geometric V NSNS ∼ ρ − 3 V H + ρ − 1 V R + ρ V Q + ρ 3 V R 4D non-geometric Field redefinition Conclusion arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark With Q , R , and F 4 , F 6 , one gets de Sitter for: ( V F 0 − V H ) + ( V Q − V F 4 ) + 2( V R − V F 6 ) > 0 ( V R − V F 2 ) + 2( V Q − V F 4 ) + 3( V R − V F 6 ) > 0 arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno

  41. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction Scalar potential: De Sitter sol. 10D 4D geometric V NSNS ∼ ρ − 3 V H + ρ − 1 V R + ρ V Q + ρ 3 V R 4D non-geometric Field redefinition Conclusion arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark With Q , R , and F 4 , F 6 , one gets de Sitter for: ( V F 0 − V H ) + ( V Q − V F 4 ) + 2( V R − V F 6 ) > 0 ( V R − V F 2 ) + 2( V Q − V F 4 ) + 3( V R − V F 6 ) > 0 arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno Q , R , help to get de Sitter solutions ! Some examples in 4D...

  42. 4D non-geometric terms David ANDRIOT Long history, motivation for these terms... Here, pratical point of view: allowed in 4D (super)potential. Introduction Scalar potential: De Sitter sol. 10D 4D geometric V NSNS ∼ ρ − 3 V H + ρ − 1 V R + ρ V Q + ρ 3 V R 4D non-geometric Field redefinition Conclusion arXiv:0711.2512 by M. P. Hertzberg, S. Kachru, W. Taylor, M. Tegmark With Q , R , and F 4 , F 6 , one gets de Sitter for: ( V F 0 − V H ) + ( V Q − V F 4 ) + 2( V R − V F 6 ) > 0 ( V R − V F 2 ) + 2( V Q − V F 4 ) + 3( V R − V F 6 ) > 0 arXiv:0907.5580, arXiv:0911.2876 by B. de Carlos, A. Guarino, J. M. Moreno Q , R , help to get de Sitter solutions ! Some examples in 4D... Obtain this from a compactification of 10D SUGRA? 10D interpretation of such solutions?

  43. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Field redefinition Presentation Lagrangians Back to 4D Conclusion

  44. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Motivations from Generalized Complex Geometry Field redefinition math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri Presentation Lagrangians Back to 4D Conclusion

  45. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Motivations from Generalized Complex Geometry Field redefinition math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri Presentation Arguments in GCG: ˜ ab , R abc Lagrangians β related to non-geometry / to Q c Back to 4D hep-th/0609084, arXiv:0708.2392 by P. Grange, S. Schäfer-Nameki Conclusion arXiv:0807.4527 by M. Graña, R. Minasian, M. Petrini, D. Waldram

  46. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Motivations from Generalized Complex Geometry Field redefinition math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri Presentation Arguments in GCG: ˜ ab , R abc Lagrangians β related to non-geometry / to Q c Back to 4D hep-th/0609084, arXiv:0708.2392 by P. Grange, S. Schäfer-Nameki Conclusion arXiv:0807.4527 by M. Graña, R. Minasian, M. Petrini, D. Waldram ˜ β appears via a reparametrization of the gen. metric H : � � � � g − 1 ˆ g − ˆ ˆ g ˜ g − 1 ˆ B ˆ B B ˆ ˜ g ˜ β H = = , ˜ g : new metric g − 1 ˆ g − 1 − ˜ − ˜ g ˜ g − 1 β ˜ ˜ β ˜ − ˆ B ˆ g β

  47. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Motivations from Generalized Complex Geometry Field redefinition math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri Presentation Arguments in GCG: ˜ ab , R abc Lagrangians β related to non-geometry / to Q c Back to 4D hep-th/0609084, arXiv:0708.2392 by P. Grange, S. Schäfer-Nameki Conclusion arXiv:0807.4527 by M. Graña, R. Minasian, M. Petrini, D. Waldram ˜ β appears via a reparametrization of the gen. metric H : � � � � g − 1 ˆ g − ˆ ˆ g ˜ g − 1 ˆ B ˆ B B ˆ g ˜ ˜ β H = = , ˜ g : new metric g − 1 ˆ g − 1 − ˜ − ˜ g ˜ g − 1 β ˜ ˜ β ˜ − ˆ B ˆ g β g − 1 + ˜ g − 1 − ˜ g − 1 − ˜ β ) − 1 ˜ g − 1 (˜ β ) − 1 g + ˆ β ) − 1 ⇔ ˆ g = (˜ ⇔ (ˆ B ) = (˜ g − 1 + ˜ β ) − 1 ˜ g − 1 − ˜ ˆ β ) − 1 B = (˜ β (˜

  48. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Motivations from Generalized Complex Geometry Field redefinition math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri Presentation Arguments in GCG: ˜ ab , R abc Lagrangians β related to non-geometry / to Q c Back to 4D hep-th/0609084, arXiv:0708.2392 by P. Grange, S. Schäfer-Nameki Conclusion arXiv:0807.4527 by M. Graña, R. Minasian, M. Petrini, D. Waldram ˜ β appears via a reparametrization of the gen. metric H : � � � � g − 1 ˆ g − ˆ ˆ g ˜ g − 1 ˆ B ˆ B B ˆ ˜ g ˜ β H = = , ˜ g : new metric g − 1 ˆ g − 1 − ˜ − ˜ g ˜ g − 1 β ˜ ˜ β ˜ − ˆ B ˆ g β g − 1 + ˜ g − 1 − ˜ g − 1 − ˜ β ) − 1 ˜ g − 1 (˜ β ) − 1 g + ˆ β ) − 1 ⇔ g = (˜ ˆ ⇔ (ˆ B ) = (˜ g − 1 + ˜ β ) − 1 ˜ g − 1 − ˜ ˆ β ) − 1 B = (˜ β (˜ φ � φ � e − 2 ˜ g | = e − 2 ˆ | ˜ | ˆ g |

  49. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Motivations from Generalized Complex Geometry Field redefinition math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri Presentation Arguments in GCG: ˜ ab , R abc Lagrangians β related to non-geometry / to Q c Back to 4D hep-th/0609084, arXiv:0708.2392 by P. Grange, S. Schäfer-Nameki Conclusion arXiv:0807.4527 by M. Graña, R. Minasian, M. Petrini, D. Waldram ˜ β appears via a reparametrization of the gen. metric H : � � � � g − 1 ˆ g − ˆ ˆ g ˜ g − 1 ˆ B ˆ B B ˆ g ˜ ˜ β H = = , ˜ g : new metric g − 1 ˆ g − 1 − ˜ − ˜ g ˜ g − 1 β ˜ ˜ β ˜ − ˆ B ˆ g β g − 1 + ˜ g − 1 − ˜ g − 1 − ˜ β ) − 1 ˜ g − 1 (˜ β ) − 1 g + ˆ β ) − 1 ⇔ g = (˜ ˆ ⇔ (ˆ B ) = (˜ g − 1 + ˜ β ) − 1 ˜ g − 1 − ˜ ˆ β ) − 1 B = (˜ β (˜ φ � φ � e − 2 ˜ g | = e − 2 ˆ | ˜ | ˆ g | g , ˆ B , ˆ g , ˜ β, ˜ φ ), ˜ Field redefinition: (ˆ φ ) ↔ (˜ β favored for non-geom.

  50. Field redefinition David Presentation ANDRIOT Key object: ˜ β : antisymmetric bivector ˜ β mn . Introduction De Sitter sol. Motivations from Generalized Complex Geometry Field redefinition math.DG/0209099 by N. Hitchin, math.DG/0401221 by M. Gualtieri Presentation Arguments in GCG: ˜ ab , R abc Lagrangians β related to non-geometry / to Q c Back to 4D hep-th/0609084, arXiv:0708.2392 by P. Grange, S. Schäfer-Nameki Conclusion arXiv:0807.4527 by M. Graña, R. Minasian, M. Petrini, D. Waldram ˜ β appears via a reparametrization of the gen. metric H : � � � � g − 1 ˆ g − ˆ ˆ g ˜ g − 1 ˆ B ˆ B B ˆ g ˜ ˜ β H = = , ˜ g : new metric g − 1 ˆ g − 1 − ˜ − ˜ g ˜ g − 1 β ˜ ˜ β ˜ − ˆ B ˆ g β g − 1 + ˜ g − 1 − ˜ g − 1 − ˜ β ) − 1 ˜ g − 1 (˜ β ) − 1 g + ˆ β ) − 1 ⇔ g = (˜ ˆ ⇔ (ˆ B ) = (˜ g − 1 + ˜ β ) − 1 ˜ g − 1 − ˜ ˆ β ) − 1 B = (˜ β (˜ φ � φ � e − 2 ˜ g | = e − 2 ˆ | ˜ | ˆ g | g , ˆ B , ˆ g , ˜ β, ˜ φ ), ˜ Field redefinition: (ˆ φ ) ↔ (˜ β favored for non-geom. Apply it on NSNS Lagrangian? ˜ β could be related to non-geo. fluxes ⇒ would they appear?

  51. David Rewriting of the NSNS Lagrangian ANDRIOT Introduction � H | 2 � φ � φ | 2 − 1 L = e − 2 ˆ ˆ R + 4 | dˆ � 2 | ˆ De Sitter sol. | ˆ g | Field redefinition Presentation Lagrangians Back to 4D Conclusion

  52. David Rewriting of the NSNS Lagrangian ANDRIOT Introduction � H | 2 � φ � φ | 2 − 1 L = e − 2 ˆ ˆ R + 4 | dˆ � 2 | ˆ De Sitter sol. | ˆ g | = ? Field redefinition Presentation Lagrangians Back to 4D Conclusion (assumption: ˜ β km ∂ m · = 0 ) gpq � gkp � 1 R = � � gkm ˜ guq ˜ gps + 2˜ gpq ˜ gks ˜ gmu + guq ˜ gsm ˜ R − ∂ k ˜ gsu ∂ m ˜ 2˜ ˜ 2 1 β pk ∂ m ˜ β qm − β qm ∂ m ˜ β pk gpq ∂ k ˜ gpq ∂ k ˜ − ˜ ˜ 2 gkm ˜ gpq ∂ k ∂ m ˜ gkm ( G − 1) pq ∂ k ∂ mGqp + 2˜ gpq + 2˜ + ∂ mGvl � gks ( G − 1) lv ∂ k ˜ gkm ( G − 1) lv ∂ k ˜ gmr ˜ grs ˜ − 2˜ grs − ˜ grs gvr � gru ( G − 1) lu ∂ v ˜ grs ( G − 1) ls ∂ k ˜ gms ˜ gkm ˜ + ˜ grs − ˜ + ∂ mGvl � glq ∂ vGmq � 1 ( G − 1) lq ∂ vGqm + ˆ 2 gkm � gpv � − ∂ mGvl ∂ k Gps 1 2( G − 1) lv ( G − 1) sp + 5( G − 1) sv ( G − 1) lp + ˆ ˜ gsl ˜ 2 g − 1 + ˜ where G = ˜ β .

  53. David Rewriting of the NSNS Lagrangian ANDRIOT Introduction � H | 2 � φ � φ | 2 − 1 L = e − 2 ˆ ˆ R + 4 | dˆ � 2 | ˆ De Sitter sol. | ˆ g | Field redefinition � 2 | Q | 2 � φ � φ | 2 − 1 Presentation = e − 2 ˜ R + 4 | d˜ � + ∂ ( . . . ) = ˜ | ˜ g | L + ∂ ( . . . ) Lagrangians Back to 4D Conclusion (assumption: ˜ β km ∂ m · = 0 ) gpq � gkp � 1 R = � � gkm ˜ guq ˜ gps + 2˜ gpq ˜ gks ˜ gmu + guq ˜ gsm ˜ R − ∂ k ˜ gsu ∂ m ˜ 2˜ ˜ 2 1 β pk ∂ m ˜ β qm − β qm ∂ m ˜ β pk gpq ∂ k ˜ gpq ∂ k ˜ − ˜ ˜ 2 gkm ˜ gpq ∂ k ∂ m ˜ gkm ( G − 1) pq ∂ k ∂ mGqp + 2˜ gpq + 2˜ + ∂ mGvl � gks ( G − 1) lv ∂ k ˜ gkm ( G − 1) lv ∂ k ˜ gmr ˜ grs ˜ − 2˜ grs − ˜ grs gvr � gru ( G − 1) lu ∂ v ˜ grs ( G − 1) ls ∂ k ˜ gms ˜ gkm ˜ + ˜ grs − ˜ + ∂ mGvl � glq ∂ vGmq � 1 ( G − 1) lq ∂ vGqm + ˆ 2 gkm � gpv � − ∂ mGvl ∂ k Gps 1 2( G − 1) lv ( G − 1) sp + 5( G − 1) sv ( G − 1) lp + ˆ ˜ gsl ˜ 2 g − 1 + ˜ where G = ˜ β .

  54. David Rewriting of the NSNS Lagrangian ANDRIOT Introduction � H | 2 � φ � φ | 2 − 1 L = e − 2 ˆ ˆ R + 4 | dˆ � 2 | ˆ De Sitter sol. | ˆ g | Field redefinition � 2 | Q | 2 � φ � φ | 2 − 1 Presentation = e − 2 ˜ R + 4 | d˜ � + ∂ ( . . . ) = ˜ | ˜ g | L + ∂ ( . . . ) Lagrangians Back to 4D mn = ∂ k ˜ β mn , | Q | 2 = qr ˜ Conclusion 1 mn Q p g kp ˜ where Q k 2! Q k g mq ˜ g nr (assumption: ˜ β km ∂ m · = 0 )

  55. David Rewriting of the NSNS Lagrangian ANDRIOT Introduction � H | 2 � φ � φ | 2 − 1 L = e − 2 ˆ ˆ R + 4 | dˆ � 2 | ˆ De Sitter sol. | ˆ g | Field redefinition � 2 | R | 2 � φ � φ | 2 − 1 2 | Q | 2 + · · · − 1 Presentation = e − 2 ˜ R + 4 | d˜ � | ˜ g | + ∂ ( . . . ) Lagrangians Back to 4D mn = ∂ k ˜ β mn , | Q | 2 = qr ˜ Conclusion 1 mn Q p g kp ˜ where Q k 2! Q k g mq ˜ g nr (assumption: ˜ β km ∂ m · = 0 ) Without the assumption ⇒ also get R mnp = 3 ˜ β np ] , | R | 2 = 3! R kmn R pqr ˜ β k [ m ∂ k ˜ 1 g kp ˜ g mq ˜ g nr

  56. David Rewriting of the NSNS Lagrangian ANDRIOT Introduction � H | 2 � φ � φ | 2 − 1 L = e − 2 ˆ ˆ R + 4 | dˆ � 2 | ˆ De Sitter sol. | ˆ g | Field redefinition � 2 | R | 2 � φ � φ | 2 − 1 2 | Q | 2 + · · · − 1 Presentation = e − 2 ˜ R + 4 | d˜ � | ˜ g | + ∂ ( . . . ) Lagrangians Back to 4D mn = ∂ k ˜ β mn , | Q | 2 = qr ˜ Conclusion 1 mn Q p g kp ˜ where Q k 2! Q k g mq ˜ g nr (assumption: ˜ β km ∂ m · = 0 ) Without the assumption ⇒ also get R mnp = 3 ˜ β np ] , | R | 2 = 3! R kmn R pqr ˜ β k [ m ∂ k ˜ 1 g kp ˜ g mq ˜ g nr Q -, R -fluxes appear in 10D NSNS via field redefinition Relation to 4D Q -, R -fluxes/non-geo. terms? ⇒ compactification

  57. David Relation to the 4D potential ANDRIOT Introduction We have shown ˆ L = ˜ L + ∂ ( . . . ). De Sitter sol. Field redefinition Presentation Lagrangians Back to 4D Conclusion

  58. David Relation to the 4D potential ANDRIOT Introduction We have shown ˆ L = ˜ L + ∂ ( . . . ). De Sitter sol. → compactify ˜ Field redefinition L ... ֒ Presentation Lagrangians Back to 4D Conclusion

  59. David Relation to the 4D potential ANDRIOT Introduction We have shown ˆ L = ˜ L + ∂ ( . . . ). De Sitter sol. g (0) → compactify ˜ Field redefinition L ... If ˜ g 6 ij → ˜ 6 ij ρ , ֒ Presentation Lagrangians 1 2 | Q | 2 = 1 → ρ V Q , V Q = 1 Back to 4D qr ˜ 2 | Q (0) | 2 , mn Q p g kp ˜ g mq ˜ g nr − 4 Q k Conclusion 1 2 | R | 2 = 1 → ρ 3 V R , V R = 1 12 R kmn R pqr ˜ 2 | R (0) | 2 . g kp ˜ g mq ˜ g nr −

  60. David Relation to the 4D potential ANDRIOT Introduction We have shown ˆ L = ˜ L + ∂ ( . . . ). De Sitter sol. g (0) → compactify ˜ Field redefinition L ... If ˜ g 6 ij → ˜ 6 ij ρ , ֒ Presentation Lagrangians 1 2 | Q | 2 = 1 → ρ V Q , V Q = 1 Back to 4D qr ˜ 2 | Q (0) | 2 , mn Q p g kp ˜ g mq ˜ g nr − 4 Q k Conclusion 1 2 | R | 2 = 1 → ρ 3 V R , V R = 1 12 R kmn R pqr ˜ 2 | R (0) | 2 . g kp ˜ g mq ˜ g nr − ˜ L can give the � potential in 4D (gives a 10D origin) Q -, R -fluxes in 10D ⇒ Q -, R -fluxes in 4D �

  61. David Relation to the 4D potential ANDRIOT Introduction We have shown ˆ L = ˜ L + ∂ ( . . . ). De Sitter sol. g (0) → compactify ˜ Field redefinition L ... If ˜ g 6 ij → ˜ 6 ij ρ , ֒ Presentation Lagrangians 1 2 | Q | 2 = 1 → ρ V Q , V Q = 1 Back to 4D qr ˜ 2 | Q (0) | 2 , mn Q p g kp ˜ g mq ˜ g nr − 4 Q k Conclusion 1 2 | R | 2 = 1 → ρ 3 V R , V R = 1 12 R kmn R pqr ˜ 2 | R (0) | 2 . g kp ˜ g mq ˜ g nr − ˜ L can give the � potential in 4D (gives a 10D origin) Q -, R -fluxes in 10D ⇒ Q -, R -fluxes in 4D � Subtleties on global aspects... (see talk of Dieter Lüst) Discussion on ˜ L rather than ˆ L , discarding ∂ ( . . . ).

  62. David Relation to the 4D potential ANDRIOT Introduction We have shown ˆ L = ˜ L + ∂ ( . . . ). De Sitter sol. g (0) → compactify ˜ Field redefinition L ... If ˜ g 6 ij → ˜ 6 ij ρ , ֒ Presentation Lagrangians 2 | Q | 2 = 1 1 → ρ V Q , V Q = 1 Back to 4D qr ˜ 2 | Q (0) | 2 , mn Q p g kp ˜ g mq ˜ g nr − 4 Q k Conclusion 1 2 | R | 2 = 1 → ρ 3 V R , V R = 1 12 R kmn R pqr ˜ 2 | R (0) | 2 . g kp ˜ g mq ˜ g nr − ˜ L can give the � potential in 4D (gives a 10D origin) Q -, R -fluxes in 10D ⇒ Q -, R -fluxes in 4D � Subtleties on global aspects... (see talk of Dieter Lüst) Discussion on ˜ L rather than ˆ L , discarding ∂ ( . . . ). Good low-en. effective description ( L , fields) of string theory depends on the background. Prescription: use ˜ L for a non-geometric background.

  63. Conclusion David ANDRIOT Introduction De Sitter sol. de Sitter sol. of 10D / 4D SUGRA are difficult to obtain. Field redefinition Unless additional ingredients ⇒ non-geometric terms � Conclusion 10D origin of these terms (of Q , R -fluxes?) g , ˆ B , ˆ g , ˜ β, ˜ GCG ⇒ Field redefinition (ˆ φ ) ↔ (˜ φ ) Rewriting NSNS Lag.: ˆ L = ˜ L + ∂ ( . . . ) , β mn (for ˜ mn = ∂ k ˜ β km ∂ m · = 0 ), R mnp = 3 ˜ β k [ m ∂ k ˜ β np ] 10D Q k Compactification of ˜ L ⇒ 4D potential � Extend to RR sector (S-duality) and D-brane/O-plane sources (new objects?) ֒ → de Sitter solutions in 10D More...

  64. David ANDRIOT Introduction De Sitter sol. Field redefinition Conclusion

  65. Non-geometry in 10D and 4D SUGRA David ANDRIOT Non-geometry in 10D Introduction Original idea of non-geometry De Sitter sol. hep-th/0208174 by S. Hellerman, J. McGreevy, B. Williams Field redefinition hep-th/0210209 by A. Dabholkar, C. Hull Conclusion hep-th/0404217 by A. Flournoy, B. Wecht, B. Williams

  66. Non-geometry in 10D and 4D SUGRA David ANDRIOT Non-geometry in 10D Introduction Original idea of non-geometry De Sitter sol. hep-th/0208174 by S. Hellerman, J. McGreevy, B. Williams Field redefinition hep-th/0210209 by A. Dabholkar, C. Hull Conclusion hep-th/0404217 by A. Flournoy, B. Wecht, B. Williams A (target) space, divided in patches Fields glue with transition functions: diffeomorphisms, gauge transformation (point-like symmetries)

  67. Non-geometry in 10D and 4D SUGRA David ANDRIOT Non-geometry in 10D Introduction Original idea of non-geometry De Sitter sol. hep-th/0208174 by S. Hellerman, J. McGreevy, B. Williams Field redefinition hep-th/0210209 by A. Dabholkar, C. Hull Conclusion hep-th/0404217 by A. Flournoy, B. Wecht, B. Williams A (target) space, divided in patches Fields glue with transition functions: diffeomorphisms, gauge transformation (point-like symmetries) String theory has more... ֒ → use stringy symmetries for gluing

  68. Non-geometry in 10D and 4D SUGRA David ANDRIOT Non-geometry in 10D Introduction Original idea of non-geometry De Sitter sol. hep-th/0208174 by S. Hellerman, J. McGreevy, B. Williams Field redefinition hep-th/0210209 by A. Dabholkar, C. Hull Conclusion hep-th/0404217 by A. Flournoy, B. Wecht, B. Williams A (target) space, divided in patches Fields glue with transition functions: diffeomorphisms, gauge transformation (point-like symmetries) String theory has more... ֒ → use stringy symmetries for gluing Away from standard geometry ֒ → non-geometry

  69. Non-geometry in 10D and 4D SUGRA David ANDRIOT Non-geometry in 10D Introduction Original idea of non-geometry De Sitter sol. hep-th/0208174 by S. Hellerman, J. McGreevy, B. Williams Field redefinition hep-th/0210209 by A. Dabholkar, C. Hull Conclusion hep-th/0404217 by A. Flournoy, B. Wecht, B. Williams A (target) space, divided in patches Fields glue with transition functions: diffeomorphisms, gauge transformation (point-like symmetries) String theory has more... ֒ → use stringy symmetries for gluing Away from standard geometry ֒ → non-geometry Fields look ill-defined: not single-valued, global issues Simple example: T-duality: circle of radius R → 1 R

  70. Non-geometry in 10D and 4D SUGRA David ANDRIOT Non-geometry in 10D Introduction Original idea of non-geometry De Sitter sol. hep-th/0208174 by S. Hellerman, J. McGreevy, B. Williams Field redefinition hep-th/0210209 by A. Dabholkar, C. Hull Conclusion hep-th/0404217 by A. Flournoy, B. Wecht, B. Williams A (target) space, divided in patches Fields glue with transition functions: diffeomorphisms, gauge transformation (point-like symmetries) R String theory has more... 1 /R ֒ → use stringy symmetries for gluing Away from standard geometry ֒ → non-geometry 0 ≡ 2 πR y Fields look ill-defined: not single-valued, global issues G. Moutsopoulos PhD 2008 Simple example: T-duality: circle of radius R → 1 R

  71. Non-geometry in 10D and 4D SUGRA David ANDRIOT Non-geometry in 10D Introduction Original idea of non-geometry De Sitter sol. hep-th/0208174 by S. Hellerman, J. McGreevy, B. Williams Field redefinition hep-th/0210209 by A. Dabholkar, C. Hull Conclusion hep-th/0404217 by A. Flournoy, B. Wecht, B. Williams A (target) space, divided in patches Fields glue with transition functions: diffeomorphisms, gauge transformation (point-like symmetries) R String theory has more... 1 /R ֒ → use stringy symmetries for gluing Away from standard geometry ֒ → non-geometry 0 ≡ 2 πR y Fields look ill-defined: not single-valued, global issues G. Moutsopoulos PhD 2008 Simple example: T-duality: circle of radius R → 1 R Famous toroidal example torus T 3 + ˆ T a T b → twisted torus ( f a − − bc ) − → non − geometric config . H abc hep-th/0211182 by S. Kachru, M. B. Schulz, P. K. Tripathy, S. P. Trivedi hep-th/0303173 by D. A. Lowe, H. Nastase, S. Ramgoolam

  72. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT Introduction De Sitter sol. Field redefinition Conclusion

  73. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Field redefinition Conclusion

  74. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Compactification on such a background Field redefinition ⇒ 4D effective theory inherits this symmetry. Conclusion

  75. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Compactification on such a background Field redefinition ⇒ 4D effective theory inherits this symmetry. Conclusion ֒ → require T-duality covariance on the 4D superpotential.

  76. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Compactification on such a background Field redefinition ⇒ 4D effective theory inherits this symmetry. Conclusion ֒ → require T-duality covariance on the 4D superpotential. ˆ H abc on M generates a term in the 4D potential. ֒ → if T-duality along a , b , c , how does the term transform?

  77. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Compactification on such a background Field redefinition ⇒ 4D effective theory inherits this symmetry. Conclusion ֒ → require T-duality covariance on the 4D superpotential. ˆ H abc on M generates a term in the 4D potential. ֒ → if T-duality along a , b , c , how does the term transform? T a Term generated by ˆ → term gen. by f a − − bc (curvature) H abc

  78. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Compactification on such a background Field redefinition ⇒ 4D effective theory inherits this symmetry. Conclusion ֒ → require T-duality covariance on the 4D superpotential. ˆ H abc on M generates a term in the 4D potential. ֒ → if T-duality along a , b , c , how does the term transform? T a Term generated by ˆ → term gen. by f a − − bc (curvature) H abc T b , T c ab , R abc − − − − → new terms needed ! Generated by Q c

  79. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Compactification on such a background Field redefinition ⇒ 4D effective theory inherits this symmetry. Conclusion ֒ → require T-duality covariance on the 4D superpotential. ˆ H abc on M generates a term in the 4D potential. ֒ → if T-duality along a , b , c , how does the term transform? T a Term generated by ˆ → term gen. by f a − − bc (curvature) H abc T b , T c ab , R abc − − − − → new terms needed ! Generated by Q c 4D T-duality chain: T a T b T c ˆ ab → f a → R abc − − − → Q c − − H abc bc hep-th/0508133, hep-th/0607015 by J. Shelton, W. Taylor, B. Wecht

  80. In 4D: non-geometric terms in the potential David Terms introduced in the superpot., for T-duality covariance. ANDRIOT T-duality: symmetry of string theory on a background with Introduction isometries. De Sitter sol. Compactification on such a background Field redefinition ⇒ 4D effective theory inherits this symmetry. Conclusion ֒ → require T-duality covariance on the 4D superpotential. ˆ H abc on M generates a term in the 4D potential. ֒ → if T-duality along a , b , c , how does the term transform? T a Term generated by ˆ → term gen. by f a − − bc (curvature) H abc T b , T c ab , R abc − − − − → new terms needed ! Generated by Q c 4D T-duality chain: T a T b T c ˆ ab → f a → R abc − − − → Q c − − H abc bc hep-th/0508133, hep-th/0607015 by J. Shelton, W. Taylor, B. Wecht Toroidal example: Q , R , correspond to non-geometric config... On the contrary to ˆ H , f , no 10D interpretation of Q , R .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend