hiroshi ohki
play

Hiroshi Ohki KMI, Nagoya University ! Y. Aoki, T. Aoyama, E. - PowerPoint PPT Presentation

Lattice study of the scalar and baryon spectra in many flavor QCD Hiroshi Ohki KMI, Nagoya University ! Y. Aoki, T. Aoyama, E. Bennett, M. Kurachi, T. Maskawa, K. Miura, K.-i. Nagai, E. Rinaldi, A. Shibata, K. Yamawaki, T. Yamazaki (LatKMI


  1. Lattice study of the scalar and baryon spectra in many flavor QCD Hiroshi Ohki KMI, Nagoya University ! Y. Aoki, T. Aoyama, E. Bennett, M. Kurachi, T. Maskawa, K. Miura, K.-i. Nagai, E. Rinaldi, A. Shibata, K. Yamawaki, T. Yamazaki (LatKMI collaboration) SCGT15 @SCGT15

  2. Studies in LatKMI for strong coupling gauge theory • Lattice study of the SU(3) gauge theory with Nf fundamental fermions • all calculations are done with same set-up: Highly Improved Staggered Quark (HISQ) type action with Nf=4*n • Nf=(4),8,(12), generic hadron spectrum properties → Y. Aoki (talk, yesterday) • Nf=8 spectrum of Dirac operator and topology → K. Nagai (talk, yesterday) • Nf=8 scalar and baryon for Dark Matter → this talk

  3. Outline • Introduction • Scalar analysis mass & decay constant • Baryon analysis • Summary

  4. Introduction

  5. “Discovery+of+Higgs+boson” • Higgs like particle (125 GeV) has been found at LHC. • Consistent with the Standard Model Higgs. But true nature is so far unknown. • Many candidates for beyond the SM one interesting possibility – (walking) technicolor • “Higgs” = dilaton (pNGB) due to breaking of the approximate scale invariance Nf=8 QCD could be a candidate of walking gauge theory. We find the flavor singlet scalar ( σ ) is as light as pion. It may be identified a techni-dilaton (Higgs in the SM), which is a pseudo-Nambu Goldstone boson. (LatKMI, Phys. Rev. D 89, 111502(R), arXiv: 1403.5000[hep-lat].)

  6. Dilaton decay constant It is important to investigate the decay constant of the flavor singlet scalar as well as mass, which is useful to study LHC phenomena; the techni-dilaton decay constant governs all the scale of couplings between Higgs and other SM particles. F σ : dilaton decay constant z, w g g σ W W = v EW σ (dilaton) g h SM W W F σ z, w b, τ , … g σ ff = (3 − γ ∗ ) v EW g σ ff σ g h SM ff F σ b, τ , … Dilaton effective theory analysis [S. Matsuzaki, K. Yamawaki, PRD86, 039525(2012)]

  7. Lattice calculation of flavor-singlet scalar mass

  8. Flavor singlet scalar from fermion bilinear operator O S ( t ) ≡ ¯ D ( t ) = � O S ( t ) O S (0) � � � O S ( t ) �� O S (0) � ψ i ψ i ( t ) , Staggered fermion case • Scalar interpolating operator can couple to two states of ! ( 1 ⊗ 1 ) & ( γ 4 γ 5 ⊗ ξ 4 ξ 5 ) ! ! C ± (2 t ) ≡ 2 C (2 t ) ± C (2 t + 1) ± C (2 t − 1) ! ! • Flavor singlet scalar can be evaluated with disconnected diagram. C σ (2 t ) = − C + (2 t ) + 2 D + (2 t ) (8 flavor) = 2 × (one staggered fermion)

  9. N f =8 Result � � Same data as [LatKMI PRD2014] and Some updates

  10. Simulation setup L 3 × T N cf [ N st ] m f ! SU(3), Nf=8 • 0.012 42 3 × 56 2300[2] ! 0.015 36 3 × 48 5400[2] • HISQ (staggered) fermion and tree level Symanzik gauge action 0.02 36 3 × 48 5000[1] ! 0.02 30 3 × 40 Volume (= L^3 x T) 8000[1] L =24, T=32 • 0.03 30 3 × 40 16500[1] L =30, T=40 • L =36, T=48 • 0.03 24 3 × 32 36000[2] L =42, T=56 • Bare coupling constant ( ) 0.04 30 3 × 40 12900[3] beta=3.8 • 0.04 24 3 × 32 50000[2] ! bare quark mass 0.04 18 3 × 24 9000[1] mf= 0.012-0.06, • (5 masses) 0.06 24 3 × 32 18000[1] ! • high statistics (more than 2,000 configurations) 0.06 18 3 × 24 9000[1] ! • We use a noise reduction technique for disconnected correlator. (use of Ward-Takahashi identity[Kilcup-Sharpe, ’87, Venkataraman-Kilcup ’97] )

  11. correlator for Nf=8, beta=3.8, L=36, mf=0.015 0.0001 -C(t) 2D(t) 1e-05 1e-06 1e-07 1e-08 1e-09 0 4 8 12 16 20 t C σ (2 t ) = − C + (2 t ) + 2 D + (2 t )

  12. m σ for Nf=8, beta=3.8, L=36, mf=0.015 (same figure as talk by Y. Aoki, yesterday) 0.5 2D + (t) - C + (t) 2D(t) 0.4 - C - (t) m � 0.3 m σ 0.2 0.1 0 0 4 8 12 16 20 t 2 D + ( t ) − C + ( t ) → A σ e − m σ 2 t D + ( t ) = A σ e − m σ 2 t + A a 0 e − m a 0 2 t → A σ e − m σ 2 t , (if m σ < m a 0 ) (in the continuum limit)

  13. m σ for Nf=8, beta=3.8 (same figure as talk by Y. Aoki, yesterday) � L=42 � L=36 0.5 � L=30 � L=24 � L=18 0.4 � � (PV) m 0.3 0.2 0.1 0 0 0.01 0.02 0.03 0.04 0.05 0.06 m f σ is as light as π and clearly lighter than ρ

  14. Scalar decay constant Preliminary

  15. Two possible decay constants for σ (F σ and Fs) 1. F σ : Dilaton decay constant difficult to calculate � 0 |D µ ( x ) | σ ; p � = iF σ p µ e − ipx D µ : dilatation current can couple to the state of σ . � 0 | ∂ µ D µ (0) | σ ; 0 � = F σ m 2 Partially conserved dilatation current relation (PCDC): σ 2. Fs :scalar decay constant not so difficult N F ¯ We use scalar density operator � O ( x ) = ψ i ψ i ( x ) ! i =1 which can also couple to the state of σ . We denote this matrix element as scalar decay constant ! ! ! (Fs : RG-invariant quantity) We study Fs. We also discuss a relation between F σ and Fs later.

  16. scalar decay constant from 2pt flavor singlet scalar correlator Insert the complete set (|n><n|) Asymptotic behavior (large t) of the scalar 2pt correlator C σ (t) NF: number of flavors V: L^3 A: amplitude

  17. What is relation between Fs and F σ ?

  18. A relation between Fs and F σ through the WT id. (in the continuum theory) the (integrated) WT-identity for dilatation transformation Useful relations (trace anomaly relation) (scale transformation) Taking the zero momentum limit (q → 0), (LHS) is zero. the WT-identity gives

  19. Insert the complete set ! into ! N F and use a scalar density operator � ¯ O = m f ψψ i We obtain (in the dilaton pole dominance approximation) [Ref: Technidilaton (Bando, Matumoto, Yamawaki, PLB 178, 308-312)] ψψ N F m f � ¯ ψψ � F σ = � ∆ ¯ � 2 V Am σ Recall ∆ ¯ ψψ = 3 − γ m

  20. ψψ N F m f � ¯ ψψ � F σ = � ∆ ¯ � 2 V Am σ ∆ ¯ ψψ = 3 − γ m (in the dilaton pole dominance approximation) c.f. PCAC relation The (integrated) chiral WT-identity tells us that using PCAC relation, this leads to π = � 4 m f � ¯ m 2 π F 2 ψψ � (GMOR relation) (in the pion pole dominance approximation)

  21. N f =8 Result

  22. Effective amplitude for Nf=8, beta=3.8 L=30, T=40, mf=0.02 0.001 2D + (t) - C + (t) 2D(t) 0.0001 A 1e-05 1e-06 1e-07 0 4 8 12 16 20 t C = A ( e − mt + e − m ( T − t ) )

  23. F σ for Nf=8, beta=3.8 ψψ N F m f � ¯ ψψ � F σ = � ∆ ¯ � 2 V Am σ 0.075 L=42 L=36 Preliminary L=30 with � ¯ ψψ � � � ¯ ψψ � 0 L=24 L=18 chiral limit 0.05 F σ ∆ ¯ ψψ Chiral extrapolation fit 0.025 Blue (mf=0.012-0.03) F σ = c 0 + c 1 m f 0 Black (mf=0.015-0.04) 0 0.01 0.02 0.03 0.04 0.05 m f F σ F σ = c 0 + c 1 m f + c 2 m 2 in the chiral limit ∼ 1 . 5 ∆ ¯ f ψψ ∼ 3 F π with assumption of γ ∼ 1 , ( ∆ ¯ ψψ = 3 − γ ∼ 2) c.f. Another estimate via the scalar mass in the dilaton ChPT (DChPT). DChPT: m 2 σ ∼ d 0 + d 1 m 2 π F σ √ � N F = 2 2 d 1 = (1 + γ ) ∆ ¯ ∼ N F F 2 F π ψψ π ∼ 1 4 F 2 σ

  24. Technibaryon Dark Matter

  25. Technibaryon • The lightest baryon is stable due to the technibaryon number conservation ! • Good candidate of the dark matter (DM) ! • Boson or fermion? (depend on the #TC) our case: DM is fermion (#TC=3). ! • Direct detection of the dark matter is possible.

  26. DM effective theory Technibaryon(B) interacts with quark(q), gluon in standard model µ ν G aµ ν + Bi ∂ µ γ ν B O µ ν + · · · L eff = c ¯ qq + c ¯ BBG a M ¯ 1 BB ¯ One of the dominant contributions in spin-independent interactions comes from the microscopic Higgs (technidilaton σ ) mediated process (below diagram) B : DM B : DM Technibaryon-scalar effective y ¯ BB σ coupling σ nucleon-scalar effective coupling y ¯ nn σ Nucleon Nucleon

  27. (Techni)baryon Chiral perturbation theory with dilaton leading order of BChPT L = ¯ B ( i γ µ ∂ µ − m B + g A 2 γ 5 γ µ u µ ) B u µ = i u † ( ∂ µ − i r µ ) u − u ( ∂ µ − i l µ ) u † � � U = u 2 = e 2 π i/F π L = ¯ B ( i γ µ ∂ µ − e σ /F σ m B + g A 2 γ 5 γ µ u µ ) B χ = e σ /F σ The dilaton-baryon effective coupling (leading order) is uniquely determined as y ¯ BB σ = m B /F σ

  28. DM Direct detection B B Spin-independent cross section with nucleus σ SI ( χ , N ) = M 2 σ π ( Zf p + ( A − Z ) f n ) 2 R Nucleon Nucleon = (3 − γ ∗ ) v EW g σ ff Note: Yukawa coupling is different from the SM : g h SM ff F σ | i f ( N ) ⌘ h N | m q ¯ qq | N i /m N Nucleon sigma term in QCD T q Nucleon matrix element non-perturbatively determined by lattice QCD calculation Lattice calculation for both nucleon and technibaryon interactions

  29. An illustrative example of DM cross section 1e-38 F σ = 250 [GeV] 1e-40 F σ = 1 [TeV] 1e-42 F σ = 3 [TeV] 1e-44 1e-46 1e-48 [GeV] m B 100 1000 10000 Sample input values m σ = 125 [GeV] f ( p ) f ( n ) γ = 1 0.019(5) 0.013(3) T u T u f ( n ) f ( p ) 0.040(9) 0.027(6) T d T d f ( n ) f ( p ) 0.009(22) 0.009(22) T s T s Lattice calculation of the nucleon sigma term (fTq) Ref [R.D. Young, and A. W. Thomas,’10, HO et al. JLQCD ’13, ]

  30. LatKMI result Baryon mass in Nf=8 QCD 0.8 0.6 m B M N 0.4 quad 0.012-0.04 linear 0.012-0.03 0.2 0 0 0.01 0.02 0.03 0.04 0.05 m f

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend