vesicles and red blood cells in microcapillary flows
play

Vesicles and Red Blood Cells in Microcapillary Flows Gerhard Gompper - PowerPoint PPT Presentation

Vesicles and Red Blood Cells in Microcapillary Flows Gerhard Gompper and Hiroshi Noguchi Institut f ur Festk orperforschung, and Institute for Advanced Simulations, Forschungszentrum J ulich, Germany Institute for Solid State


  1. Vesicles and Red Blood Cells in Microcapillary Flows Gerhard Gompper and Hiroshi Noguchi ∗ Institut f¨ ur Festk¨ orperforschung, and Institute for Advanced Simulations, Forschungszentrum J¨ ulich, Germany ∗ Institute for Solid State Physics, University of Tokyo, Japan

  2. Soft Matter Hydrodynamics Cells and vesicles in flow: • Red blood cells in microvessels: Diseases such as diabetes reduce deformability of red blood cells!

  3. Soft Matter Hydrodynamics Example: Flow behavior of malaria-infected red blood cells in microchannels Just after infection: Late stage: Diameter: 8 µ m 6 µ m 4 µ m 2 µ m J.P. Shelby et al., Proc. Natl. Acad. Sci. 100 (2003)

  4. Mesoscale Flow Simulations Complex fluids: length- and time-scale gap between • atomistic scale of solvent • mesoscopic scale of dispersed particles (colloids, polymers, membranes) → Mesoscale Simulation Techniques − Examples: Basic idea: • Lattice Boltzmann Method (LBM) • drastically simplify dynamics on molecular scale • Dissipative Particle Dynamics (DPD) • respect conservation laws for mass, momentum, energy • Multi-Particle-Collision Dynamics (MPC) Alternative approach : Hydrodynamic interactions via Oseen tensor

  5. Mesoscale Hydrodynamics Simulations Multi-Particle-Collision Dynamics (MPC) • coarse grained fluid • point particles • off-lattice method • collisions inside “cells” • thermal fluctuations A. Malevanets and R. Kapral, J. Chem. Phys. 110 (1999) A. Malevanets and R. Kapral, J. Chem. Phys. 112 (2000)

  6. Multi-Particle Collision Dynamics (MPC) Flow dynamics: Two step process Streaming • ballistic motion r i ( t + h ) = r i ( t ) + v i ( t ) h

  7. Multi-Particle Collision Dynamics (MPC) Flow dynamics: Two step process Streaming Collision i • ballistic motion • mean velocity per cell v i ( t ) = 1 � n i r i ( t + h ) = r i ( t ) + v i ( t ) h ¯ j ∈ C i v j ( t ) n i • rotation of relative velocity by angle α v ′ i = ¯ v i + D ( α )( v i − ¯ v i )

  8. Mesoscale Flow Simulations: MPC • Lattice of collision cells: breakdown of Galilean invariance • Restore Galilean invariance exactly: random shifts of cell lattice T. Ihle and D.M. Kroll, Phys. Rev. E 63 (2001)

  9. Mesoscale Flow Simulations: MPC • Lattice of collision cells: breakdown of Galilean invariance • Restore Galilean invariance exactly: random shifts of cell lattice T. Ihle and D.M. Kroll, Phys. Rev. E 63 (2001)

  10. Low-Reynolds-Number Hydrodynamics • Reynolds number Re = v max L/ν ∼ inertia forces / friction forces For soft matter systems with characteristic length scales of µm : Re ≃ 10 − 3 • Schmidt number Sc = ν/D ∼ momentum transp. / mass transp. Gases: Sc ≃ 1 , liquids: Sc ≃ 10 3 1000 α =130, ρ =30 α =130, ρ =5 100 α =90, ρ =5 α =45, ρ =5 α =15, ρ =5 10 S c 1 0.1 0.01 0.1 1 10 h M. Ripoll, K. Mussawisade, R.G. Winkler and G. Gompper, Europhys. Lett. 68 (2004)

  11. Other MPC Methods • Anderson thermostat (MPC-AT-a): Choose new relative velocities from Maxwell-Boltzmann distribution • Angular-momentum conservation (MPC-AT+a): Modify collision rule to conserve angular momentum • Importance of angular-momentum conservation: Rotating fluid drop with different viscosity in circular Couette flow 10 R Ω v θ / Ω 0 a Angular 1 d 5 velocity +a -a y profile: 2 R 2 m 1 /m 0 =5 0 0 5 10 x r/a H. Noguchi, N. Kikuchi, G. Gompper, Europhys. Lett. 78 (2007); I.O. G¨ otze, H. Noguchi, G. Gompper, Phys. Rev. E 76 (2007)

  12. Membranes Hydrodynamics of Membranes and Vesicles

  13. Equilibrium Vesicle Shapes 0 and reduced volume V ∗ = V/V 0 , where Minimize curvature energy for fixed area A = 4 πR 2 V 0 = 4 πR 3 0 / 3 : stomatocyte discoctyte prolate U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A 44 (1991)

  14. Simulations of Membranes Modelling of membranes on different length scales: atomistic coarse-grained solvent-free triangulated

  15. Simulations of Membranes Dynamically triangulated surfaces Hard-core diameter σ Tether length L: σ < L < √3 σ --> self-avoidance Dynamic triangulation: G. Gompper & D.M. Kroll (2004)

  16. Membrane Hydrodynamics Interaction between membrane and fluid: • Streaming step: bounce-back scattering of solvent particles on triangles • Collision step: membrane vertices are included in MPC collisions implies impenetrable membrane with no-slip boundary conditions. H. Noguchi and G. Gompper, Phys. Rev. Lett. 93 (2004); Phys. Rev. E 72 (2005)

  17. Membrane Hydrodynamics Vesicle Dynamics in Shear Flow

  18. Vesicles in Shear Flow Parameter: shear rate ˙ γ Variables: • Reduced volume V ∗ • Shape • Membrane viscosity η mb • Internal viscosity η in low viscosity Behavior in shear flow: • Tank-treading • Tumbling • Swinging (vacillating-breathing, trembling) • Shape transformations high viscosity

  19. Swinging, Vacillating-breathing, Trembling γ = 1 . 8 s − 1 ˙ γ = 1 . 7 s − 1 ˙ Transition fom tumbling to swinging with increasing shear rate ˙ γ V. Kantsler and V. Steinberg, Phys. Rev. Lett. 96 (2006) inclination angle θ Theory : C. Misbah, Phys. Rev. Lett. 96 (2006); H. Noguchi and G. Gompper, Phys. Rev. Lett. 98 (2007); P.M. Vlahovska and R.S. Garcia, Phys. Rev. E 78 (2007); V.V. Lebedev et al., Phys. Rev. Lett. 99 (2007) ...

  20. Swinging of Fluid Vesicles: Theory Phase diagram: Shape dynamics: Mechanism: → tumbling → tank-treading H. Noguchi and G. Gompper, Phys. Rev. Lett. 98 (2007)

  21. Vesicles with Viscosity Contrast in Bulk • Two-dimensional vesicles in shear flow (a) Tank-treading: • Employ MPC-AT+a (with angular momentum conservation) (b) Swinging: • Change viscosity contrast λ by va- rying mass of fluid particles 25 (c) Tumbling: This work: Beaucourt: 20 KS theory: 15 θ [ ◦ ] 10 t ˙ γ 0 5 10 15 20 25 30 5 0 -5 0 2 4 6 8 10 λ S. Messlinger, B. Schmidt, H. Noguchi and G. Gompper, Phys. Rev. E 80 (2009)

  22. Vesicles with Viscosity Contrast near Wall λ = 1 : (a) λ = 2 : Vesicle in gravitational field near wall: λ = 3 : λ = 4 : F L R p / ( k B T ) 100 λ = 7 : λ = 10 : 1.08 ✎☞ ✎☞ Oseen: y − 2 ✍✌ ✍✌ cm : 1.04 ✎☞ ✎☞ ✎☞ ✎☞ ✎☞ 1.00 ✍✌ ✍✌ ✍✌ ✍✌ ✎☞ ✎☞ ✎☞ ✎☞ 10 ✍✌ 0.96 ✍✌ ✍✌ ✍✌ ✍✌ r cm y cm F G 0.5 1 2 5 0.92 ��������������� ��������������� y cm /R p ��������������� ��������������� ��������������� ��������������� (b) (a) 180 Simulation Lift force F L balanced by gravitational Oseen 160 140 cm / ( k B T R p ) force F G 120 100 80 F L y 2 60 Lift force depends on viscosity 40 20 contrast λ = η in /η out 0 0 2 4 6 8 10 λ S. Messlinger, B. Schmidt, H. Noguchi and G. Gompper, Phys. Rev. E 80 (2009)

  23. Membrane Hydrodynamics Vesicle and Cells in Capillary Flow

  24. Capillary Flow: Fluid Vesicles • small flow velocities: vesicle axis perpendicular to capillary axis − → no axial symmetry! • discocyte-to-prolate transition with increasing flow H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. USA 102 (2005)

  25. Capillary Flow: Red Blood Cells • Spectrin network induces shear elasticity µ of composite membrane • Elastic parameters: κ/k B T = 50 , µR 2 0 /k B T = 5000

  26. Capillary Flow: Elastic Vesicles ( κ = 20 k B T , µ = 110 k B T/R 2 • curvature and shear elasticity 0 ) Elastic vesicle: • model for red blood cells parachute shape

  27. Capillary Flow: Elastic Vesicles • curvature and shear elasticity Elastic vesicle: • model for red blood cells Tsukada et al., Microvasc. Res. 61 (2001)

  28. Capillary Flow: Red Blood Cells Shear elasticity suppresses prolate shapes (large deformations) Flow velocity at discocyte-to-parachute transition bending rigidity shear modulus Implies for RBCs: v trans ≃ 0 . 2 mm/s for R cap = 4 . 6 µm

  29. RBC Clustering & Alignment in Flow Physiological conditions: Hematocrit (volume fraction of RBCs) H = 0 . 45 Lower in narrow capillaries H T = 0 . 1 ... 0 . 2 Therefore: Hydrodynamic interactions between RBCs very important Note: No direct attractive interactions considered!

  30. RBC Clustering & Alignment in Flow Low hematocrit H T : • Single vesicles more deformed → move faster • Effective hydrodynamic attraction stabilizes clusters J.L. McWhirter, H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. 106 (2009)

  31. RBC Clustering & Alignment in Flow Low hematocrit H T : 6 v * 0 =7.7 =10 =10 Positional correlation function nb ) 4 a G(z * 2 0 0 1 2 3 4 5 z * nb 0.7 Probability for cluster size n cl 0.6 0.5 0.4 P(n cl ) b 0.3 0.2 0.1 Clustering tendency increases with 0 0 1 2 3 4 5 6 7 increasing flow velocity n cl

  32. RBC Clustering & Alignment in Flow Low hematocrit H T : 6 v * 0 =7.7 =10 =10 Positional correlation function nb ) 4 a G(z * 2 0 0 1 2 3 4 5 z * nb 0.7 Probability for cluster size n cl 0.6 0.5 0.4 P(n cl ) b 0.3 0.2 0.1 Clustering tendency increases with 0 0 1 2 3 4 5 6 7 increasing flow velocity n cl

  33. RBC Clustering & Alignment in Flow High hematocrit H T : disordered discocyte aligned parachute zig-zag slipper J.L. McWhirter, H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. 106 (2009)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend