topological quantum field theory and orbifolds
play

Topological quantum field theory and orbifolds Nils Carqueville - PowerPoint PPT Presentation

Topological quantum field theory and orbifolds Nils Carqueville Universit at Wien Motivation: quantum field theory QFT spacetime algebra Motivation: quantum field theory spacetime Bord def n ( D ) Vect algebra spacetime algebra


  1. Examples of 2d defect TQFTs Trivial defect TQFT Z triv : � � D 2 := C � � D 1 := finite-dimensional C -vector spaces � � D 0 := linear maps � def V 1 Z triv � . . = V 1 ⊗ · · · ⊗ V m . V m � def Z triv � = ( evaluate 0- und 1-strata as string diagrams in Vect) B-twisted sigma models : Calabi-Yau manifolds and holomorphic vector bundles Landau-Ginzburg models : isolated singularities and homological algebra (more soon. . . )

  2. State sum models Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

  3. State sum models Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

  4. State sum models Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 (2) Decorate Poincar´ e-dual graph with ( C , A, µ, ∆) : A A A C ∆ C C C C C C µ A A A A C Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

  5. State sum models Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 (2) Decorate Poincar´ e-dual graph with ( C , A, µ, ∆) : A A A C ∆ C C C C C C µ A A A A C (3) Obtain Σ t,A in Bord def 2 ( D triv ) and define Z ss A (Σ) = Z triv (Σ t,A ) Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

  6. State sum models Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 (2) Decorate Poincar´ e-dual graph with ( C , A, µ, ∆) : A A A C ∆ C C C C C C µ A A A A C (3) Obtain Σ t,A in Bord def 2 ( D triv ) and define Z ss A (Σ) = Z triv (Σ t,A ) Theorem. Construction yields TQFT Z ss A : Bord 2 − → Vect . Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

  7. State sum models Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 (2) Decorate Poincar´ e-dual graph with ( C , A, µ, ∆) : A A A C ∆ C C C C C C µ A A A A C (3) Obtain Σ t,A in Bord def 2 ( D triv ) and define Z ss A (Σ) = Z triv (Σ t,A ) Theorem. Construction yields TQFT Z ss A : Bord 2 − → Vect . Proof sketch : Defining properties of ( A, µ, ∆) encode invariance under Pachner moves = ⇒ independent of choice of triangulation: 2-2 1-3 ← → ← → Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

  8. State sum models Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 (2) Decorate Poincar´ e-dual graph with ( C , A, µ, ∆) : A A A C ∆ C C C C C C µ A A A A C (3) Obtain Σ t,A in Bord def 2 ( D triv ) and define Z ss A (Σ) = Z triv (Σ t,A ) Theorem. Construction yields TQFT Z ss A : Bord 2 − → Vect . Proof sketch : Defining properties of ( A, µ, ∆) encode invariance under Pachner moves = ⇒ independent of choice of triangulation: 2-2 1-3 ← → ← → ← → ← → Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

  9. Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 (2) Decorate Poincar´ e-dual graph with ( C , A, µ, ∆) : A A A C ∆ C C C C C C µ A A A A C (3) Obtain Σ t,A in Bord def 2 ( D triv ) and define Z ss A (Σ) = Z triv (Σ t,A ) Theorem. Construction yields TQFT Z ss A : Bord 2 − → Vect .

  10. Input : ∆ -separable symmetric Frobenius C -algebra ( A, µ, ∆) (1) Choose oriented triangulation t for every bordism Σ in Bord 2 (2) Decorate Poincar´ e-dual graph with ( C , A, µ, ∆) : A A A C ∆ C C C C C C µ A A A A C (3) Obtain Σ t,A in Bord def 2 ( D triv ) and define Z ss A (Σ) = Z triv (Σ t,A ) Theorem. Construction yields TQFT Z ss A : Bord 2 − → Vect . No need to consider only algebras over C !

  11. Orbifolds Definition. Let Z : Bord def 2 ( D ) − → Vect be defect TQFT. Carqueville/Runkel 2012

  12. Orbifolds Definition. Let Z : Bord def 2 ( D ) − → Vect be defect TQFT. An orbifold datum for Z is A ≡ ( α, A, µ, ∆) : α A A A α α ∆ α α α µ A α α A α A A α ∈ D 2 A ∈ D 1 µ ∈ D 0 ∆ ∈ D 0 such that Pachner moves become identities under Z : � � � � � � � � ! ! Z = Z Z = Z Carqueville/Runkel 2012

  13. Orbifolds Definition. Let Z : Bord def 2 ( D ) − → Vect be defect TQFT. An orbifold datum for Z is A ≡ ( α, A, µ, ∆) : α A A A α α ∆ α α α µ A α α A α A A α ∈ D 2 A ∈ D 1 µ ∈ D 0 ∆ ∈ D 0 such that Pachner moves become identities under Z : � � � � � � � � ! ! Z = Z Z = Z Definition & Theorem. Triangulation + A -decoration + evaluation with Z Carqueville/Runkel 2012

  14. Orbifolds Definition. Let Z : Bord def 2 ( D ) − → Vect be defect TQFT. An orbifold datum for Z is A ≡ ( α, A, µ, ∆) : α A A A α α ∆ α α α µ A α α A α A A α ∈ D 2 A ∈ D 1 µ ∈ D 0 ∆ ∈ D 0 such that Pachner moves become identities under Z : � � � � � � � � ! ! Z = Z Z = Z Definition & Theorem. Triangulation + A -decoration + evaluation with Z = A -orbifold TQFT Z A : Bord 2 − → Vect Carqueville/Runkel 2012

  15. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Davydov/Kong/Runkel 2011

  16. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Proof sketch : – objects = elements of D 2 = ‘theories’ Davydov/Kong/Runkel 2011

  17. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Proof sketch : – objects = elements of D 2 = ‘theories’ – 1-morphisms X : α → β = (lists of) elements of D 1 = ‘defect lines’: . . . α 2 α 1 α β x n x 3 x 2 x 1 Davydov/Kong/Runkel 2011

  18. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Proof sketch : – objects = elements of D 2 = ‘theories’ – 1-morphisms X : α → β = (lists of) elements of D 1 = ‘defect lines’: . . . α 2 α 1 α β x n x 3 x 2 x 1 – 2-morphisms = ‘junction fields’: . . . y 2 � � y 1 y m Hom( X, Y ) = Z x 1 x n x 2 . . . Davydov/Kong/Runkel 2011

  19. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Proof sketch : – objects = elements of D 2 = ‘theories’ – 1-morphisms X : α → β = (lists of) elements of D 1 = ‘defect lines’: . . . α 2 α 1 α β x n x 3 x 2 x 1 – 2-morphisms = ‘junction fields’: y 1 y 2 y m . . . . . . y 2 � � y 1 y m Hom( X, Y ) = Z ∋ α β x 1 x n x 2 . . . . . . x 1 x 2 x n Davydov/Kong/Runkel 2011

  20. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Davydov/Kong/Runkel 2011

  21. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z ր objects = bulk theories, 1-morphisms = defect lines, 2-morphisms = junction fields Davydov/Kong/Runkel 2011

  22. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Examples. – vector spaces : BVect ∗ , finite-dimensional C -vector spaces, linear maps Davydov/Kong/Runkel 2011, Carqueville 2016

  23. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Examples. – vector spaces : BVect ∗ , finite-dimensional C -vector spaces, linear maps – state sum models ∆ -separable symmetric Frobenius C -algebras, bimodules, intertwiners Davydov/Kong/Runkel 2011, Carqueville 2016

  24. Algebraic characterisation Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Examples. – vector spaces : BVect ∗ , finite-dimensional C -vector spaces, linear maps – state sum models ∆ -separable symmetric Frobenius C -algebras, bimodules, intertwiners – B-twisted sigma models Calabi-Yau varieties, Fourier-Mukai kernels, RHom – A-twisted sigma models symplectic manifolds, Lagrangian correspondences, Floer homology – Landau-Ginzburg models isolated singularities, matrix factorisations – differential graded categories smooth and proper dg categories, dg bimodules, intertwiners – categorified quantum groups weights, functors E i , F j . . . , string diagrams. . . Davydov/Kong/Runkel 2011, Carqueville 2016

  25. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Davydov/Kong/Runkel 2011

  26. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Davydov/Kong/Runkel 2011

  27. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = = = = = Davydov/Kong/Runkel 2011

  28. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = = = = = ⇐ ⇒ � � � � � � � � Z = Z Z = Z Davydov/Kong/Runkel 2011

  29. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Davydov/Kong/Runkel 2011

  30. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Examples. – ∆ -separable symmetric Frobenius algebras in BVect Davydov/Kong/Runkel 2011

  31. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Examples. – ∆ -separable symmetric Frobenius algebras in BVect = ∆ -separable symmetric Frobenius C -algebras � Davydov/Kong/Runkel 2011

  32. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Examples. – ∆ -separable symmetric Frobenius algebras in BVect = ∆ -separable symmetric Frobenius C -algebras � ⇒ Z ss A = ( Z triv ) A (“ State sum models are orbifolds of the trivial TQFT. ”) = Davydov/Kong/Runkel 2011

  33. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Examples. – ∆ -separable symmetric Frobenius algebras in BVect = ∆ -separable symmetric Frobenius C -algebras � ⇒ Z ss A = ( Z triv ) A (“ State sum models are orbifolds of the trivial TQFT. ”) = G – A G G -action in B Z is 2-functor ρ : B G − → B Z . Davydov/Kong/Runkel 2011

  34. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Examples. – ∆ -separable symmetric Frobenius algebras in BVect = ∆ -separable symmetric Frobenius C -algebras � ⇒ Z ss A = ( Z triv ) A (“ State sum models are orbifolds of the trivial TQFT. ”) = G – A G G -action in B Z is 2-functor ρ : B G − → B Z . Lemma. A G := � g ∈ G ρ ( g ) is ∆ -separable Frobenius algebra in B Z . Davydov/Kong/Runkel 2011, Fr¨ ohlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014

  35. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Examples. – ∆ -separable symmetric Frobenius algebras in BVect = ∆ -separable symmetric Frobenius C -algebras � ⇒ Z ss A = ( Z triv ) A (“ State sum models are orbifolds of the trivial TQFT. ”) = G – A G G -action in B Z is 2-functor ρ : B G − → B Z . Lemma. A G := � g ∈ G ρ ( g ) is ∆ -separable Frobenius algebra in B Z . Z G = Z A G Lemma. G -orbifolds are orbifolds: � Davydov/Kong/Runkel 2011, Fr¨ ohlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014

  36. Algebraic characterisation of orbifolds Theorem. 2d defect TQFT Z = ⇒ pivotal 2-category B Z Lemma. � ∼ � � � orbifold data for Z ∆ -separable symmetric Frobenius algebras in B Z = Examples. – ∆ -separable symmetric Frobenius algebras in BVect = ∆ -separable symmetric Frobenius C -algebras � ⇒ Z ss A = ( Z triv ) A (“ State sum models are orbifolds of the trivial TQFT. ”) = G – A G G -action in B Z is 2-functor ρ : B G − → B Z . Lemma. A G := � g ∈ G ρ ( g ) is ∆ -separable Frobenius algebra in B Z . Z G = Z A G Lemma. G -orbifolds are orbifolds: � Orbifolds unify gauging of symmetry groups and state sum models. Davydov/Kong/Runkel 2011, Fr¨ ohlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014

  37. Orbifold equivalence: main idea Let X : α − → β be line defect such that � = 0 in correlators. α X β Carqueville/Runkel 2012

  38. Orbifold equivalence: main idea Let X : α − → β be line defect such that � = 0 in correlators. α X β Then with A := X † ◦ X : α − → α we have: Carqueville/Runkel 2012

  39. Orbifold equivalence: main idea Let X : α − → β be line defect such that � = 0 in correlators. α X β Then with A := X † ◦ X : α − → α we have: � � β Carqueville/Runkel 2012

  40. Orbifold equivalence: main idea Let X : α − → β be line defect such that � = 0 in correlators. α X β Then with A := X † ◦ X : α − → α we have: � � � � α X ∼ β β Carqueville/Runkel 2012

  41. Orbifold equivalence: main idea Let X : α − → β be line defect such that � = 0 in correlators. α X β Then with A := X † ◦ X : α − → α we have: � � � � α X ∼ β β � � = Carqueville/Runkel 2012

  42. Orbifold equivalence: main idea Let X : α − → β be line defect such that � = 0 in correlators. α X β Then with A := X † ◦ X : α − → α we have: � � � � α X ∼ β β � � � � = = A α Carqueville/Runkel 2012

  43. Orbifold equivalence: main idea Let X : α − → β be line defect such that � = 0 in correlators. α X β Then with A := X † ◦ X : α − → α we have: � � � � α X ∼ β β � � � � = = A α Theorem. ( orbifold equivalence α ∼ β ) � ∼ � � � theory β A -orbifold of theory α = Carqueville/Runkel 2012

  44. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] Eisenbud 1980, Carqueville/Murfet 2012

  45. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] Examples. W A n − 1 = x n 1 + x 2 W D n +1 = x n 1 + x 1 x 2 W E 7 = x 3 1 + x 1 x 3 2 , 2 , 2 Eisenbud 1980, Carqueville/Murfet 2012

  46. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] Eisenbud 1980, Carqueville/Murfet 2012

  47. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] – LG ( W, V ) = homotopy category of matrix factorisations D of V − W Eisenbud 1980, Carqueville/Murfet 2012

  48. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] – LG ( W, V ) = homotopy category of matrix factorisations D of V − W � 0 0 x y � � 0 u n − i y 2 − x for x 3 + xy 3 0 0 � for u n , Examples. D = D = x 2 u i 0 0 0 xy xy 2 − x 2 0 0 Eisenbud 1980, Carqueville/Murfet 2012

  49. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] – LG ( W, V ) = homotopy category of matrix factorisations D of V − W Eisenbud 1980, Carqueville/Murfet 2012

  50. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] – LG ( W, V ) = homotopy category of matrix factorisations D of V − W � � � � �� � � str i ∂ x i D j ∂ z j D d x – = Res for D : W − → V W ∂ x 1 W . . . ∂ x n W D V Eisenbud 1980, Carqueville/Murfet 2012

  51. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] – LG ( W, V ) = homotopy category of matrix factorisations D of V − W � � � � �� � � str i ∂ x i D j ∂ z j D d x – = Res for D : W − → V W ∂ x 1 W . . . ∂ x n W D V Theorem. ( Orbifold equivalences in LG ) x k + xy 2 u 2 k + v 2 � � ∼ D k +1 ∼ A 2 k − 1 x 3 + y 4 u 12 + v 2 � � ∼ E 6 ∼ A 11 x 3 + xy 3 u 18 + v 2 � � ∼ E 7 ∼ A 17 x 3 + y 5 u 30 + v 2 � � ∼ E 8 ∼ A 29 Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013

  52. Orbifolds of Landau-Ginzburg models Theorem. There is a pivotal 2-category LG with: – objects = potentials W ∈ C [ x 1 , . . . , x n ] – LG ( W, V ) = homotopy category of matrix factorisations D of V − W � � � � �� � � str i ∂ x i D j ∂ z j D d x – = Res for D : W − → V W ∂ x 1 W . . . ∂ x n W D V Theorem. ( Orbifold equivalences in LG ) x k + xy 2 u 2 k + v 2 � � ∼ D k +1 ∼ A 2 k − 1 x 3 + y 4 u 12 + v 2 � � ∼ E 6 ∼ A 11 x 3 + xy 3 u 18 + v 2 � � ∼ E 7 ∼ A 17 x 3 + y 5 u 30 + v 2 � � ∼ E 8 ∼ A 29 x 5 y + y 3 u 3 v + v 5 � � ∼ E 13 ∼ Z 11 x 6 + xy 3 + z 2 vw 3 + v 3 + u 2 w � � ∼ Z 13 ∼ Q 11 Carqueville/Murfet 2012, Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017

  53. Orbifold equivalence: application (simple) (complicated) Theorem. A 11 ∼ E 6 etc. Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017

  54. Orbifold equivalence: application (simple) (complicated) Theorem. A 11 ∼ E 6 etc. � � u 12 + v 2 = 0 � x 3 + y 4 = 0 � A 11 : E 6 : � = Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017

  55. Orbifold equivalence: application (simple) (complicated) Theorem. A 11 ∼ E 6 etc. � � u 12 + v 2 = 0 � x 3 + y 4 = 0 � A 11 : E 6 : ≇ Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017

  56. Orbifold equivalence: application (simple) (complicated) Theorem. A 11 ∼ E 6 etc. � � u 12 + v 2 = 0 � x 3 + y 4 = 0 � A 11 : E 6 : ∼ Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017

  57. Aside: Non-semisimple fully extended TQFTs

  58. Aside: Non-semisimple fully extended TQFTs Theorem. For every potential W , the associated Landau-Ginzburg model Bord 2 , 1 − → Vect can be lifted to a fully extended TQFT − → LG Bord 2 , 1 , 0 pt + �− → W S 1 �− → C [ x 1 , . . . , x n ] / ( ∂ x 1 W, . . . , ∂ x n W ) Carqueville/Montiel Montoya 2018

  59. Aside: Non-semisimple fully extended TQFTs Theorem. For every potential W , the associated Landau-Ginzburg model Bord 2 , 1 − → Vect can be lifted to a fully extended TQFT − → LG Bord 2 , 1 , 0 pt + �− → W S 1 �− → C [ x 1 , . . . , x n ] / ( ∂ x 1 W, . . . , ∂ x n W ) Remarks. – Jacobi algebra C [ x 1 , . . . , x n ] / ( ∂ x 1 W, . . . , ∂ x n W ) is non-semisimple . Carqueville/Montiel Montoya 2018

  60. Aside: Non-semisimple fully extended TQFTs Theorem. For every potential W , the associated Landau-Ginzburg model Bord 2 , 1 − → Vect can be lifted to a fully extended TQFT − → LG Bord 2 , 1 , 0 pt + �− → W S 1 �− → C [ x 1 , . . . , x n ] / ( ∂ x 1 W, . . . , ∂ x n W ) Remarks. – Jacobi algebra C [ x 1 , . . . , x n ] / ( ∂ x 1 W, . . . , ∂ x n W ) is non-semisimple . – Need SO(2) -homotopy fixed points for fully extended oriented TQFTs. Carqueville/Montiel Montoya 2018

  61. Aside: Non-semisimple fully extended TQFTs Theorem. For every potential W , the associated Landau-Ginzburg model Bord 2 , 1 − → Vect can be lifted to a fully extended TQFT − → LG Bord 2 , 1 , 0 pt + �− → W S 1 �− → C [ x 1 , . . . , x n ] / ( ∂ x 1 W, . . . , ∂ x n W ) Remarks. – Jacobi algebra C [ x 1 , . . . , x n ] / ( ∂ x 1 W, . . . , ∂ x n W ) is non-semisimple . – Need SO(2) -homotopy fixed points for fully extended oriented TQFTs. For Q -graded LG models, get constraint on central charge c ( W ) = 3 � i (1 − | x i | ) . Carqueville/Montiel Montoya 2018

  62. Summary so far A 11 E 6 ∼

  63. Summary so far A 11 E 6 S 11 W 13 ∼ ∼

  64. Summary so far A 11 E 6 S 11 W 13 ∼ ∼ Z G = Z A G Z ss A = ( Z triv ) A

  65. Summary so far A 11 E 6 S 11 W 13 ∼ ∼ Z G = Z A G Z ss A = ( Z triv ) A 2d orbifolds – encode triangulation invariance in algebraic structure – involve representation theory of algebras in 2-categories – unify gauging of symmetry groups and state sum models – uncover new dualities

  66. The orbifold construction can be generalised to n -dimensional defect TQFTs Z : Bord def n ( D ) − → Vect in any dimension n � 1 . Carqueville/Meusburger/Schaumann 2016, Carqueville/Runkel/Schaumann 2017–2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend