a potpourri of nonlinear algebra
play

A Potpourri of Nonlinear Algebra Chris Hillar 2 Det 2 , 2 , 2 ( A ) - PowerPoint PPT Presentation

1 a 1 a 2 a 3 + c 1 c 2 c 3 = 2 , a 1 a 3 b 2 + c 1 c 3 d 2 = 0 , a 2 a 3 b 1 + c 2 c 3 d 1 = 0 , X d i = a 3 b 1 b 2 + c 3 d 1 d 2 = 4 , a 1 a 2 b 3 + c 1 c 2 d 3 = 0 , a 1 b 2 b 3 + c 1 d 2 d 3 = 4 , i + j a 2 b 1 b 3 + c 2 d 3 d 1


  1. 1 a 1 a 2 a 3 + c 1 c 2 c 3 = 2 , a 1 a 3 b 2 + c 1 c 3 d 2 = 0 , a 2 a 3 b 1 + c 2 c 3 d 1 = 0 , X d i = a 3 b 1 b 2 + c 3 d 1 d 2 = − 4 , a 1 a 2 b 3 + c 1 c 2 d 3 = 0 , a 1 b 2 b 3 + c 1 d 2 d 3 = − 4 , θ i + θ j a 2 b 1 b 3 + c 2 d 3 d 1 = 4 , b 1 b 2 b 3 + d 1 d 2 d 3 = 0 j 6 = i A Potpourri of Nonlinear Algebra Chris Hillar �◆� 2 Det 2 , 2 , 2 ( A ) = 1  ✓ �  �◆ ✓ �  a 000 a 010 a 100 a 110 a 000 a 010 a 100 a 110 det + − det − 4 a 001 a 011 a 101 a 111 a 001 a 011 a 101 a 111  �  � a 000 a 010 a 100 a 110 − 4 det det . a 001 a 011 a 101 a 111 a 1 c 1 − b 1 d 1 − u 2 , b 1 c 1 + a 1 d 1 , c 1 u − a 2 1 + b 2 1 , d 1 u − 2 a 1 b 1 , a 1 u − c 2 1 + d 2 1 , b 1 u − 2 d 1 c 1 , a 2 c 2 − b 2 d 2 − u 2 , b 2 c 2 + a 2 d 2 , c 2 u − a 2 2 + b 2 2 , d 2 u − 2 a 2 b 2 , a 2 u − c 2 2 + d 2 2 , b 2 u − 2 d 2 c 2 , a 3 c 3 − b 3 d 3 − u 2 , b 3 c 3 + a 3 d 3 , c 3 u − a 2 3 + b 2 3 , d 3 u − 2 a 3 b 3 , a 3 u − c 2 3 + d 2 3 , b 3 u − 2 d 3 c 3 , a 4 c 4 − b 4 d 4 − u 2 , b 4 c 4 + a 4 d 4 , c 4 u − a 2 4 + b 2 4 , d 4 u − 2 a 4 b 4 , a 4 u − c 2 4 + d 2 4 , b 4 u − 2 d 4 c 4 , a 2 1 − b 2 1 + a 1 a 3 − b 1 b 3 + a 2 3 − b 2 3 , a 2 1 − b 2 1 + a 1 a 4 − b 1 b 4 + a 2 4 − b 2 4 , a 2 1 − b 2 1 + a 1 a 2 − b 1 b 2 + a 2 2 − b 2 2 , a 2 2 − b 2 2 + a 2 a 3 − b 2 b 3 + a 2 3 − b 2 3 , a 2 3 − b 2 3 + a 3 a 4 − b 3 b 4 + a 2 4 − b 2 4 , 2 a 1 b 1 + a 1 b 2 + a 2 b 1 + 2 a 2 b 2 , 2 a 2 b 2 + a 2 b 3 + a 3 b 2 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 3 + a 2 b 1 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 4 + a 4 b 1 + 2 a 4 b 4 , 2 a 3 b 3 + a 3 b 4 + a 4 b 3 + 2 a 4 b 4 , w 2 1 + w 2 2 + · · · + w 2 17 + w 2 18 . a 000 x 0 y 0 + a 010 x 0 y 1 + a 100 x 1 y 0 + a 110 x 1 y 1 = 0 , a 001 x 0 y 0 + a 011 x 0 y 1 + a 101 x 1 y 0 + a 111 x 1 y 1 = 0 , a 000 x 0 z 0 + a 001 x 0 z 1 + a 100 x 1 z 0 + a 101 x 1 z 1 = 0 , a 010 x 0 z 0 + a 011 x 0 z 1 + a 110 x 1 z 0 + a 111 x 1 z 1 = 0 , a 000 y 0 z 0 + a 001 y 0 z 1 + a 010 y 1 z 0 + a 011 y 1 z 1 = 0 , a 100 y 0 z 0 + a 101 y 0 z 1 + a 110 y 1 z 0 + a 111 y 1 z 1 = 0 , ICERM | Computational Nonlinear Algebra | June 2014

  2. Outline Computational complexity of nonlinear algebra “Real-life” examples: Tensor problems - graph theory, optimization, Groebner bases Neuroscience: The Retina Equations - bipartite graphs, probability, matrix analysis

  3. Computational Nonlinear Algebra Problem: Solve on a finite computer in finite time a finite set of polynomial (quadratic) equations computability ring reference [Hilbert’s 10th Problem] Undecidable [Davis, Putnam, Robinson, Z (“Uncomputable”) Matijasevi č ’61/’70] ????? [Poonen ’03] Q Decidable [Tarski–Seidenberg] R (“Computable”) [Hironaka ’64, Buchberger ’70] C

  4. Some “Random” Polynomial Systems: a) a 1 a 2 a 3 + c 1 c 2 c 3 = 2 , a 1 a 3 b 2 + c 1 c 3 d 2 = 0 , a 2 a 3 b 1 + c 2 c 3 d 1 = 0 , a 3 b 1 b 2 + c 3 d 1 d 2 = − 4 , a 1 a 2 b 3 + c 1 c 2 d 3 = 0 , a 1 b 2 b 3 + c 1 d 2 d 3 = − 4 , a 2 b 1 b 3 + c 2 d 3 d 1 = 4 , b 1 b 2 b 3 + d 1 d 2 d 3 = 0 b) a 1 c 1 − b 1 d 1 − u 2 , b 1 c 1 + a 1 d 1 , c 1 u − a 2 1 + b 2 1 , d 1 u − 2 a 1 b 1 , a 1 u − c 2 1 + d 2 1 , b 1 u − 2 d 1 c 1 , a 2 c 2 − b 2 d 2 − u 2 , b 2 c 2 + a 2 d 2 , c 2 u − a 2 2 + b 2 2 , d 2 u − 2 a 2 b 2 , a 2 u − c 2 2 + d 2 2 , b 2 u − 2 d 2 c 2 , a 3 c 3 − b 3 d 3 − u 2 , b 3 c 3 + a 3 d 3 , c 3 u − a 2 3 + b 2 3 , d 3 u − 2 a 3 b 3 , a 3 u − c 2 3 + d 2 3 , b 3 u − 2 d 3 c 3 , a 4 c 4 − b 4 d 4 − u 2 , b 4 c 4 + a 4 d 4 , c 4 u − a 2 4 + b 2 4 , d 4 u − 2 a 4 b 4 , a 4 u − c 2 4 + d 2 4 , b 4 u − 2 d 4 c 4 , a 2 1 − b 2 1 + a 1 a 3 − b 1 b 3 + a 2 3 − b 2 3 , a 2 1 − b 2 1 + a 1 a 4 − b 1 b 4 + a 2 4 − b 2 4 , a 2 1 − b 2 1 + a 1 a 2 − b 1 b 2 + a 2 2 − b 2 2 , a 2 2 − b 2 2 + a 2 a 3 − b 2 b 3 + a 2 3 − b 2 3 , a 2 3 − b 2 3 + a 3 a 4 − b 3 b 4 + a 2 4 − b 2 4 , 2 a 1 b 1 + a 1 b 2 + a 2 b 1 + 2 a 2 b 2 , 2 a 2 b 2 + a 2 b 3 + a 3 b 2 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 3 + a 2 b 1 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 4 + a 4 b 1 + 2 a 4 b 4 , 2 a 3 b 3 + a 3 b 4 + a 4 b 3 + 2 a 4 b 4 , w 2 1 + w 2 2 + · · · + w 2 17 + w 2 18 . c) a 000 x 0 y 0 + a 010 x 0 y 1 + a 100 x 1 y 0 + a 110 x 1 y 1 = 0 , a 001 x 0 y 0 + a 011 x 0 y 1 + a 101 x 1 y 0 + a 111 x 1 y 1 = 0 , a 000 x 0 z 0 + a 001 x 0 z 1 + a 100 x 1 z 0 + a 101 x 1 z 1 = 0 , a 010 x 0 z 0 + a 011 x 0 z 1 + a 110 x 1 z 0 + a 111 x 1 z 1 = 0 , a 000 y 0 z 0 + a 001 y 0 z 1 + a 010 y 1 z 0 + a 011 y 1 z 1 = 0 , a 100 y 0 z 0 + a 101 y 0 z 1 + a 110 y 1 z 0 + a 111 y 1 z 1 = 0 ,

  5. A Briefer on Computational Complexity I. Model of Computation Alan Turing - What are inputs / outputs? - What is a computation? II. Model of Complexity Stephen Cook - Cost of computation? Dick Karp III. Model of Reducibility - What are equivalent problems? Leonid Levin

  6. I. Model of Computation: Turing Machine [Turing ’37][Turing 1936] Inputs: finite list of rational numbers Outputs: YES/NO or rational vectors II. Model of Complexity: Time complexity Turing Machine (Mike Davey) Number of Tape-Level moves III. Model of Reducibility: Classes: P (polynomial-time), NP ,, NP-Hard NP-complete, NP-hard, ... Tensor Problems P2 input I input I’ P1 NP-Complete polynomial-sized transformation NP P2 P1 P Matrix Problems = YES/NO YES/NO the world of all computational problems

  7. NP-complete decision problems [Cook-Karp-Levin 1971/2] Graph coloring: Given graph G , is there a proper 3-coloring? 1 2 1 2 4 3 4 3 YES NO is an NP-complete (can verify quickly) problem 1 Million $$$ prize (Clay Math)

  8. Connection to nonlinear algebra Theorem [Bayer ‘82]: Whether or not a graph is 3- colorable can be encoded as whether a system of cubic equations over has a nonzero solution C Reformulation [H., Lim ’13]: Whether or not a graph G on v vertices with edges E is 3-colorable can be encoded as whether the following homogeneous quadratics has a nonzero solution in C ( x i y i − u 2 , y i u − x 2 x i u − y 2 i = 1 , . . . , v, i , i , C G = j : { i,j } ∈ E ( x 2 i + x i x j + x 2 P j ) , i = 1 , . . . , v. Quadratic System x i = a i + i b i over the reals R y i = c i + i d i

  9. primitive cube root of 1 Example: The following ω graph is 3-colorable: ω 2 1 1 2 x i = 1 x i = ω 4 3 x i = ω 2 1 ω The system has a (nonzero) solution over the reals: 35 homogeneous quadratics in 35 indeterminates: A ∈ Q 35 × 35 × 35 b) a 1 c 1 − b 1 d 1 − u 2 , b 1 c 1 + a 1 d 1 , c 1 u − a 2 1 + b 2 1 , d 1 u − 2 a 1 b 1 , a 1 u − c 2 1 + d 2 1 , b 1 u − 2 d 1 c 1 , a 2 c 2 − b 2 d 2 − u 2 , b 2 c 2 + a 2 d 2 , c 2 u − a 2 2 + b 2 2 , d 2 u − 2 a 2 b 2 , a 2 u − c 2 2 + d 2 2 , b 2 u − 2 d 2 c 2 , a 3 c 3 − b 3 d 3 − u 2 , b 3 c 3 + a 3 d 3 , c 3 u − a 2 3 + b 2 3 , d 3 u − 2 a 3 b 3 , a 3 u − c 2 3 + d 2 3 , b 3 u − 2 d 3 c 3 , a 4 c 4 − b 4 d 4 − u 2 , b 4 c 4 + a 4 d 4 , c 4 u − a 2 4 + b 2 4 , d 4 u − 2 a 4 b 4 , a 4 u − c 2 4 + d 2 4 , b 4 u − 2 d 4 c 4 , a 2 1 − b 2 1 + a 1 a 3 − b 1 b 3 + a 2 3 − b 2 3 , a 2 1 − b 2 1 + a 1 a 4 − b 1 b 4 + a 2 4 − b 2 4 , a 2 1 − b 2 1 + a 1 a 2 − b 1 b 2 + a 2 2 − b 2 2 , a 2 2 − b 2 2 + a 2 a 3 − b 2 b 3 + a 2 3 − b 2 3 , a 2 3 − b 2 3 + a 3 a 4 − b 3 b 4 + a 2 4 − b 2 4 , 2 a 1 b 1 + a 1 b 2 + a 2 b 1 + 2 a 2 b 2 , 2 a 2 b 2 + a 2 b 3 + a 3 b 2 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 3 + a 2 b 1 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 4 + a 4 b 1 + 2 a 4 b 4 , 2 a 3 b 3 + a 3 b 4 + a 4 b 3 + 2 a 4 b 4 , w 2 1 + w 2 2 + · · · + w 2 17 + w 2 18 .

  10. 1 2 Example: The following graph is not 3-colorable: 4 3 The system does not have (nonzero) solution over : R a 2 2 − b 2 2 + a 2 a 4 − b 2 b 4 + a 2 4 − b 2 4 , 2 a 2 b 2 + a 2 b 4 + a 4 b 2 + 2 a 4 b 4 b) a 1 c 1 − b 1 d 1 − u 2 , b 1 c 1 + a 1 d 1 , c 1 u − a 2 1 + b 2 1 , d 1 u − 2 a 1 b 1 , a 1 u − c 2 1 + d 2 1 , b 1 u − 2 d 1 c 1 , a 2 c 2 − b 2 d 2 − u 2 , b 2 c 2 + a 2 d 2 , c 2 u − a 2 2 + b 2 2 , d 2 u − 2 a 2 b 2 , a 2 u − c 2 2 + d 2 2 , b 2 u − 2 d 2 c 2 , a 3 c 3 − b 3 d 3 − u 2 , b 3 c 3 + a 3 d 3 , c 3 u − a 2 3 + b 2 3 , d 3 u − 2 a 3 b 3 , a 3 u − c 2 3 + d 2 3 , b 3 u − 2 d 3 c 3 , a 4 c 4 − b 4 d 4 − u 2 , b 4 c 4 + a 4 d 4 , c 4 u − a 2 4 + b 2 4 , d 4 u − 2 a 4 b 4 , a 4 u − c 2 4 + d 2 4 , b 4 u − 2 d 4 c 4 , a 2 1 − b 2 1 + a 1 a 3 − b 1 b 3 + a 2 3 − b 2 3 , a 2 1 − b 2 1 + a 1 a 4 − b 1 b 4 + a 2 4 − b 2 4 , a 2 1 − b 2 1 + a 1 a 2 − b 1 b 2 + a 2 2 − b 2 2 , a 2 2 − b 2 2 + a 2 a 3 − b 2 b 3 + a 2 3 − b 2 3 , a 2 3 − b 2 3 + a 3 a 4 − b 3 b 4 + a 2 4 − b 2 4 , 2 a 1 b 1 + a 1 b 2 + a 2 b 1 + 2 a 2 b 2 , 2 a 2 b 2 + a 2 b 3 + a 3 b 2 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 3 + a 2 b 1 + 2 a 3 b 3 , 2 a 1 b 1 + a 1 b 4 + a 4 b 1 + 2 a 4 b 4 , 2 a 3 b 3 + a 3 b 4 + a 4 b 3 + 2 a 4 b 4 , w 2 1 + w 2 2 + · · · + w 2 17 + w 2 18 .

  11. Example: The graph G below is uniquely 3-colorable [Example of Akbari, Mirrokni, Sadjad ‘01 disproving a conjecture of Xu ’90] The coloring ideal is trivial (< 2 sec computation) I G [H., Windfeldt ’08]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend