a multiaxial high cycle transversely isotropic fatigue
play

A multiaxial high-cycle transversely isotropic fatigue model Reijo - PowerPoint PPT Presentation

A multiaxial high-cycle transversely isotropic fatigue model Reijo Kouhia 1 , Sami Holopainen 1 , Timo Saksala 1 and Andrew Roiko 2 1 Tampere University of Technology Department of Mechanical Engineering and Industrial Systems 2 VTT Technical


  1. A multiaxial high-cycle transversely isotropic fatigue model Reijo Kouhia 1 , Sami Holopainen 1 , Timo Saksala 1 and Andrew Roiko 2 1 Tampere University of Technology Department of Mechanical Engineering and Industrial Systems 2 VTT Technical Research Centre of Finland Partially funded by TEKES - the National Technology Agency of Finland Project SCarFace, number 40205/12 14 th European Mechanics of Materials Conference August 27–29, 2014, Gothenburg, Sweden

  2. Outline 800 600 • Motivation and background stress [MPa] 400 200 • Isotropic model 0 • Transversely isotropic model −200 0 20 40 60 80 • Parameter estimation 0.02 • Results 0.015 • Conclusions and future Damage 0.01 developments 0.005 0 80 0 20 40 60 80 EMMC-14, August 27–29, 2014 2

  3. Motivation and background Certain materials exhibit transversely isotropic symmetry • unidirectionally reinforced composites • forged metals – elasticity isotropic – fatigue properties transversely isotropic Figures from http://aciers.free.fr EMMC-14, August 27–29, 2014 3

  4. Background - Fatigue models Either stress, strain or energy based. Stress based criteria are commonly used in high-cycle fatigue • stress invariant criteria, Sines 1955, Crossland 1956, Fuchs 1979 • critical plane criteria, Findley 1959, Dang Van 1989, McDiarmid 1990 • average stress criteria, Gr¨ ubisic and Simburger 1976, Papadopoulos 1997. Cumulative damage theories. A more fundamental approach using evolution equations. EMMC-14, August 27–29, 2014 4

  5. Continuum approach Proposed by Ottosen, Stenstr¨ om and Ristinmaa in 2008. � s � Endurance surface postulated as α � = 0 β = 0 1 β < 0 β > 0 β = (¯ σ + AI 1 − σ oe ) , 0 σ oe = β where I 1 � � 3 B σ = ¯ 3 J 2 ( s − α ) = 2 ( s − α ) : ( s − α ) , σ 1 β > 0 d s I 1 = tr σ . Back stress and damage evolution eqs. d α ’ β < 0 α ’ d α α = C ( s − α ) ˙ ˙ β, α D = g ( β, D ) ˙ β = K exp( Lβ ) ˙ ˙ β. σ 2 σ 3 A EMMC-14, August 27–29, 2014 5

  6. Transversely isotropic model The stress is decomposed as σ = σ L + σ T , where σ T = P σP , P = I − B , where B = b ⊗ b is the structural tensor and b is the unit vector normal to the transverse isotropy plane. Integrity basis of a transversely isotropic solid I 2 = 1 2 tr ( σ 2 ) , I 3 = 1 3 tr ( σ 3 ) , I 5 = tr ( σ 2 B ) . I 1 = tr σ , I 4 = tr ( σB ) , EMMC-14, August 27–29, 2014 6

  7. Endurance surface Present transversely isotropic formulation � � �� β = σ + A L I L 1 + A T I T 1 − ¯ (1 − ζ ) S T + ζS L /S T = 0 , where � σ = ¯ 3 J 2 ( s − α ) , I L 1 = tr σ L = I 4 , I T 1 = tr σ T = I 1 − I 4 , and � n � 2 I 5 − I 2 � σ L : σ L � n 4 ζ = = . σ : σ 2 I 2 In uniaxial loading σ = σ n ⊗ n the ζ -factor has the form ζ = (2 cos 2 ψ − cos 4 ψ ) n , where ψ is the angle between n and b . EMMC-14, August 27–29, 2014 7

  8. Shape in the π -plane and ζ -factor σ 1 1 0.8 0.6 ζ 0.4 n = 0 . 5 0.2 n = 1 n = 2 σ 2 σ 3 0 π/ 8 π/ 4 3 π/ 8 π/ 2 0 ψ , S L /S T = 1 dotted black line, 1 . 5 dashed blue line, 2 red line A L = 0 . 225 , A T = 0 . 275 b = (0 , 0 , 1) T EMMC-14, August 27–29, 2014 8

  9. Evolution equations for α and D Damage and the back-stress evolves only when moving away from the endurance surface K 1 − D exp( Lβ ) ˙ α = C ( s − α ) ˙ ˙ D = β, ˙ β. 2 σ 2 5 1 σ 1 - α 2 = α 3 α 1 - - α 4 = α 5 3 σ 3 4 σ 4 ∽ time EMMC-14, August 27–29, 2014 9

  10. Estimation of the parameters Five material parameters in the endurance surface S L , S T , A L , A T and n . Three material parameters in the evolution equations for the back-stress and damage C, K and L . Data from tests with forged 34CrMo6 steel. Due to the lack of data in the intermediate directions we have chosen n = 1 . S L = 447 MPa , S T = 360 MPa , A L = 0 . 225 , A T = 0 . 300 , K = 12 . 8 · 10 − 5 , C = 33 . 6 , L = 4 . 0 EMMC-14, August 27–29, 2014 10

  11. !" !" !" !" !" !" !" !" Fatigue strengths σ m = 0 1 600 0.8 500 σ a [MPa] 0.6 Damage 0.4 400 0.2 0 300 2 3 4 5 6 10 10 10 10 10 10 4 10 5 10 6 10 7 N N △ denotes experimental results, • model predictions EMMC-14, August 27–29, 2014 11

  12. !" !" !" !" !" Effect of mean stress σ x = σ x m + σ x a sin( ωt ) σ y = σ y m + σ y a sin( ωt ) longitudinal transverse 1 . 0 1 . 0 σ x a ( σ x m ) /σ x a (0) 0 . 9 σ y a ( σ y m ) /σ y a (0) 0 . 9 0 . 8 0 . 8 0 . 7 0 . 7 0 . 6 0 . 6 0 . 5 0 . 5 0 0 . 5 1 . 0 1 . 5 2 . 0 0 0 . 5 1 . 0 1 . 5 2 . 0 σ x m /σ x a σ y m /σ y a △ denotes experimental results from McDiarmid 1985 (34CrNiMo6), • model predictions EMMC-14, August 27–29, 2014 12

  13. !" !" !" !" !" Effect of mean shear stress τ xy = τ xy m + τ xy a sin( ωt ) 1 .0 1.0 1 . 0 0.8 τ xy a ( τ xy m ) /τ xy a (0) Damage 0.6 0 . 9 0.4 0 . 8 0.2 0 . 7 0 100 1000 10000 50000 0 0 . 5 1 . 0 1 . 5 2 . 0 N τ xy m /τ xy a EMMC-14, August 27–29, 2014 13

  14. Effect of phase shift σ x = σ x m + σ x a sin( ωt ) σ x = σ x a sin( ωt ) τ xy = 1 σ y = σ x m + σ x a sin( ωt − φ y ) 2 σ x a sin( ωt − φ xy ) (a) (b) 1 . 1 1 . 3 1 . 0 1 . 2 σ x a ( φ xy ) /σ x a (0) σ x a ( φ y ) /σ x a (0) 0 . 9 1 . 1 0 . 8 1 . 0 0 . 7 0 . 6 0 . 9 0 45 90 135 180 0 30 60 90 φ y φ xy EMMC-14, August 27–29, 2014 14

  15. ! ! "# "# "# ! ! Effect of frequency difference model based on isotropic AISI SAE 4340 transversely isotropic 34CrMo6 exp. results shown 25CrMo4 (Liu & Zenner) 34CrNiMo6 (McDiarmid) σ x = σ x a sin( ω x t ) σ x = σ x a sin( ω x t ) τ xy = 1 2 σ x a sin( ω xy t ) σ y = σ x a sin( ω y t ) 1 . 3 1 . 3 1 . 2 1 . 2 1 . 1 1 . 1 σ x a ( ω xy ) /σ x a (1) σ x a ( φ y ) /σ x a (0) 1 . 0 1 . 0 0 . 9 0 . 9 0 . 8 0 . 8 0 . 7 0 . 7 0 . 6 0 . 6 10 − 1 10 0 10 1 1 2 3 4 5 6 7 8 ω xy /ω x ω y /ω x EMMC-14, August 27–29, 2014 15

  16. Conclusions and future developments • Transversally isotropic continuum based HCF-model • More tests needed • Microstructurally based anisotropic damage model • Constitutive model with anisotropic damage • Implementation into a FE code Alexander Roslin: Lady with the veil, 1768 Thank you for your attention! EMMC-14, August 27–29, 2014 16

  17. Deviatoric invariants Deviatoric invariants and max shear in the longitudinal and in the isotropy plane 2 tr ( s 2 ) , J 5 = tr ( s 2 B ) . J 2 = 1 J 4 = tr ( sB ) , � � J 2 + 1 4 J 2 J 5 − J 2 τ max ( σ T ) = 4 − J 5 , τ max ( σ L ) = 4 . EMMC-14, August 27–29, 2014 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend