transversal homotopy theory
play

Transversal homotopy theory Joint with Conor Smyth, inspired by Baez - PowerPoint PPT Presentation

Transversal homotopy theory Joint with Conor Smyth, inspired by Baez and Dolan Details in arXiv:0910.3322 March, 2010 Homotopy groups A homotopy of continuous maps f , g : X Y is a continuous map h : X [0 , 1] Y such that h ( x , 0) =


  1. Transversal homotopy theory Joint with Conor Smyth, inspired by Baez and Dolan Details in arXiv:0910.3322 March, 2010

  2. Homotopy groups A homotopy of continuous maps f , g : X → Y is a continuous map h : X × [0 , 1] → Y such that h ( x , 0) = f ( x ) and h ( x , 1) = g ( x ).

  3. Homotopy groups A homotopy of continuous maps f , g : X → Y is a continuous map h : X × [0 , 1] → Y such that h ( x , 0) = f ( x ) and h ( x , 1) = g ( x ). Fix basepoints ∗ . All maps and homotopies preserve basepoints.

  4. Homotopy groups A homotopy of continuous maps f , g : X → Y is a continuous map h : X × [0 , 1] → Y such that h ( x , 0) = f ( x ) and h ( x , 1) = g ( x ). Fix basepoints ∗ . All maps and homotopies preserve basepoints. The n th homotopy group of a topological space X is π n ( X ) = { f : S n → X } / homotopy

  5. Homotopy groups A homotopy of continuous maps f , g : X → Y is a continuous map h : X × [0 , 1] → Y such that h ( x , 0) = f ( x ) and h ( x , 1) = g ( x ). Fix basepoints ∗ . All maps and homotopies preserve basepoints. The n th homotopy group of a topological space X is π n ( X ) = { f : S n → X } / homotopy For n = 0 it is a set, for n = 1 a group, and for n ≥ 2 an abelian group where group operation arises from

  6. Homotopy groups of spheres � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11 � 12 � 13 � 14 � 15 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 1 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 S 2 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 2 Z 12 � Z 2 Z 84 � Z 2 Z 2 0 Z Z 2 2 2 S 3 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 12 � Z 2 Z 2 Z 84 � Z 2 Z 2 0 0 Z 2 2 3 5 S 4 Z � Z 12 Z 24 � Z 3 Z 15 Z 2 Z 120 � Z 12 � Z 2 Z 84 � Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 0 0 0 Z 3 S 5 Z 2 Z 2 Z 24 Z 2 Z 2 Z 2 Z 30 Z 2 Z 2 Z 72 � Z 2 0 0 0 0 Z 3 S 6 Z 2 Z 2 Z 24 Z 2 Z 60 Z 24 � Z 2 Z 2 0 0 0 0 0 Z 0 Z 3 S 7 Z 2 Z 2 Z 24 Z 2 Z 120 Z 2 0 0 0 0 0 0 Z 0 0 S 8 Z 2 Z 2 Z 24 Z � Z 120 Z 2 0 0 0 0 0 0 0 Z 0 0 1 1 Table from en.wikipedia.org/wiki/Homotopy groups of spheres .

  7. Homotopy groups of spheres � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11 � 12 � 13 � 14 � 15 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 1 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 S 2 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 2 Z 12 � Z 2 Z 84 � Z 2 Z 2 0 Z Z 2 2 2 S 3 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 12 � Z 2 Z 2 Z 84 � Z 2 Z 2 0 0 Z 2 2 3 5 S 4 Z � Z 12 Z 24 � Z 3 Z 15 Z 2 Z 120 � Z 12 � Z 2 Z 84 � Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 0 0 0 Z 3 S 5 Z 2 Z 2 Z 24 Z 2 Z 2 Z 2 Z 30 Z 2 Z 2 Z 72 � Z 2 0 0 0 0 Z 3 S 6 Z 2 Z 2 Z 24 Z 2 Z 60 Z 24 � Z 2 Z 2 0 0 0 0 0 Z 0 Z 3 S 7 Z 2 Z 2 Z 24 Z 2 Z 120 Z 2 0 0 0 0 0 0 Z 0 0 S 8 Z 2 Z 2 Z 24 Z � Z 120 Z 2 0 0 0 0 0 0 0 Z 0 0 1 ◮ π n ( S k ) = 0 for n < k 1 Table from en.wikipedia.org/wiki/Homotopy groups of spheres .

  8. Homotopy groups of spheres � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11 � 12 � 13 � 14 � 15 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 1 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 S 2 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 2 Z 12 � Z 2 Z 84 � Z 2 Z 2 0 Z Z 2 2 2 S 3 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 12 � Z 2 Z 2 Z 84 � Z 2 Z 2 0 0 Z 2 2 3 5 S 4 Z � Z 12 Z 24 � Z 3 Z 15 Z 2 Z 120 � Z 12 � Z 2 Z 84 � Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 0 0 0 Z 3 S 5 Z 2 Z 2 Z 24 Z 2 Z 2 Z 2 Z 30 Z 2 Z 2 Z 72 � Z 2 0 0 0 0 Z 3 S 6 Z 2 Z 2 Z 24 Z 2 Z 60 Z 24 � Z 2 Z 2 0 0 0 0 0 Z 0 Z 3 S 7 Z 2 Z 2 Z 24 Z 2 Z 120 Z 2 0 0 0 0 0 0 Z 0 0 S 8 Z 2 Z 2 Z 24 Z � Z 120 Z 2 0 0 0 0 0 0 0 Z 0 0 1 ◮ π n ( S k ) = 0 for n < k ◮ π n ( S n ) ∼ = Z 1 Table from en.wikipedia.org/wiki/Homotopy groups of spheres .

  9. Homotopy groups of spheres � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11 � 12 � 13 � 14 � 15 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 1 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 S 2 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 2 Z 12 � Z 2 Z 84 � Z 2 Z 2 0 Z Z 2 2 2 S 3 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 12 � Z 2 Z 2 Z 84 � Z 2 Z 2 0 0 Z 2 2 3 5 S 4 Z � Z 12 Z 24 � Z 3 Z 15 Z 2 Z 120 � Z 12 � Z 2 Z 84 � Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 0 0 0 Z 3 S 5 Z 2 Z 2 Z 24 Z 2 Z 2 Z 2 Z 30 Z 2 Z 2 Z 72 � Z 2 0 0 0 0 Z 3 S 6 Z 2 Z 2 Z 24 Z 2 Z 60 Z 24 � Z 2 Z 2 0 0 0 0 0 Z 0 Z 3 S 7 Z 2 Z 2 Z 24 Z 2 Z 120 Z 2 0 0 0 0 0 0 Z 0 0 S 8 Z 2 Z 2 Z 24 Z � Z 120 Z 2 0 0 0 0 0 0 0 Z 0 0 1 ◮ π n ( S k ) = 0 for n < k ◮ π n ( S n ) ∼ = Z ◮ π n ( S k ) ∼ = π n +1 ( S k +1 ) for 2 k ≥ n + 2 (Freudenthal, 1937) 1 Table from en.wikipedia.org/wiki/Homotopy groups of spheres .

  10. Homotopy groups of spheres � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11 � 12 � 13 � 14 � 15 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 1 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 S 2 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 2 Z 12 � Z 2 Z 84 � Z 2 Z 2 0 Z Z 2 2 2 S 3 Z 2 Z 2 Z 12 Z 2 Z 2 Z 3 Z 15 Z 2 Z 12 � Z 2 Z 2 Z 84 � Z 2 Z 2 0 0 Z 2 2 3 5 S 4 Z � Z 12 Z 24 � Z 3 Z 15 Z 2 Z 120 � Z 12 � Z 2 Z 84 � Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 0 0 0 Z 3 S 5 Z 2 Z 2 Z 24 Z 2 Z 2 Z 2 Z 30 Z 2 Z 2 Z 72 � Z 2 0 0 0 0 Z 3 S 6 Z 2 Z 2 Z 24 Z 2 Z 60 Z 24 � Z 2 Z 2 0 0 0 0 0 Z 0 Z 3 S 7 Z 2 Z 2 Z 24 Z 2 Z 120 Z 2 0 0 0 0 0 0 Z 0 0 S 8 Z 2 Z 2 Z 24 Z � Z 120 Z 2 0 0 0 0 0 0 0 Z 0 0 1 ◮ π n ( S k ) = 0 for n < k ◮ π n ( S n ) ∼ = Z ◮ π n ( S k ) ∼ = π n +1 ( S k +1 ) for 2 k ≥ n + 2 (Freudenthal, 1937) ◮ finite unless k = n or k = 2 m , n = 4 m − 1 (Serre, 1951) 1 Table from en.wikipedia.org/wiki/Homotopy groups of spheres .

  11. Geometrical interpretation Lev Pontrjagin gave a geometric interpretation of the homotopy groups of spheres in terms of bordism theory of smooth manifolds (1938). Perhaps curiously for a topologist he was blind.

  12. The Pontrjagin construction — preliminaries Theorem (Smooth approximation) A continuous map f : M → N of smooth manifolds, smooth on closed A ⊂ M, is homotopic rel A to a smooth map.

  13. The Pontrjagin construction — preliminaries Theorem (Smooth approximation) A continuous map f : M → N of smooth manifolds, smooth on closed A ⊂ M, is homotopic rel A to a smooth map. Recall f is transverse to B if df ( T x M ) + T fx B = T fx N for all x ∈ f − 1 B . This implies f − 1 B is a submanifold and df induces Nf − 1 B ∼ = f ∗ NB . Not transverse Transverse

  14. The Pontrjagin construction — preliminaries Theorem (Smooth approximation) A continuous map f : M → N of smooth manifolds, smooth on closed A ⊂ M, is homotopic rel A to a smooth map. Recall f is transverse to B if df ( T x M ) + T fx B = T fx N for all x ∈ f − 1 B . This implies f − 1 B is a submanifold and df induces Nf − 1 B ∼ = f ∗ NB . Not transverse Transverse Theorem (Transversal approximation) A smooth map f : M → N is homotopic to a map transverse to a compact submanifold B ⊂ N by a homotopy local to f − 1 B.

  15. Framed submanifolds. . . Fix p ∈ S k (not the basepoint).

  16. Framed submanifolds. . . Fix p ∈ S k (not the basepoint). ◮ f : S n → S k transverse to p ⇒ f − 1 p a codim k sbmfld

  17. Framed submanifolds. . . Fix p ∈ S k (not the basepoint). ◮ f : S n → S k transverse to p ⇒ f − 1 p a codim k sbmfld ◮ h : S n × [0 , 1] → S k transverse to p ⇒ h − 1 p a bordism

  18. Framed submanifolds. . . Fix p ∈ S k (not the basepoint). ◮ f : S n → S k transverse to p ⇒ f − 1 p a codim k sbmfld ◮ h : S n × [0 , 1] → S k transverse to p ⇒ h − 1 p a bordism S n × { 0 } h − 1 ( p ) S n × { 1 }

  19. Framed submanifolds. . . Fix p ∈ S k (not the basepoint). ◮ f : S n → S k transverse to p ⇒ f − 1 p a codim k sbmfld ◮ h : S n × [0 , 1] → S k transverse to p ⇒ h − 1 p a bordism S n × { 0 } h − 1 ( p ) S n × { 1 } = f − 1 p × R k is trivial, with given Furthermore, Nf − 1 p ∼ = f ∗ Np ∼ trivialisation, i.e. f − 1 p is framed, and similarly for h .

  20. . . . and collapse maps Given codimension k framed submanifold A ⊂ M construct ‘collapse’ map f : M → S k as follows:

  21. . . . and collapse maps Given codimension k framed submanifold A ⊂ M construct ‘collapse’ map f : M → S k as follows: ◮ f ( a ) = p for all a ∈ A

  22. . . . and collapse maps Given codimension k framed submanifold A ⊂ M construct ‘collapse’ map f : M → S k as follows: ◮ f ( a ) = p for all a ∈ A ◮ extend to tubular neighbourhood U of A by → R k ∼ = S k − ∗ U ∼ = NA ∼ = A × R k π 2 −

  23. . . . and collapse maps Given codimension k framed submanifold A ⊂ M construct ‘collapse’ map f : M → S k as follows: ◮ f ( a ) = p for all a ∈ A ◮ extend to tubular neighbourhood U of A by → R k ∼ = S k − ∗ U ∼ = NA ∼ = A × R k π 2 − ◮ for x �∈ U set f ( x ) = ∗ and smooth rel nbhd of A .

  24. . . . and collapse maps Given codimension k framed submanifold A ⊂ M construct ‘collapse’ map f : M → S k as follows: ◮ f ( a ) = p for all a ∈ A ◮ extend to tubular neighbourhood U of A by → R k ∼ = S k − ∗ U ∼ = NA ∼ = A × R k π 2 − ◮ for x �∈ U set f ( x ) = ∗ and smooth rel nbhd of A . The resulting f is transversal to p with f − 1 p = A .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend