12
play

12 Variational Formulation of Plane Beam Element IFEM Ch 12 - PDF document

Introduction to FEM 12 Variational Formulation of Plane Beam Element IFEM Ch 12 Slide 1 Introduction to FEM A Beam is a Structural Member Designed to Resist Primarily Transverse Loads IFEM Ch 12 Slide 2 Introduction to FEM


  1. Introduction to FEM 12 Variational Formulation of Plane Beam Element IFEM Ch 12 – Slide 1

  2. Introduction to FEM A Beam is a Structural Member Designed to Resist Primarily Transverse Loads IFEM Ch 12 – Slide 2

  3. Introduction to FEM Transverse Loads are Transported to Supports by Flexural Action Neutral surface Compressive stress Tensile stress IFEM Ch 12 – Slide 3

  4. Introduction to FEM Beam Configuration Spatial (General Beams) Plane (This Chapter) Beam Models Bernoulli-Euler Timoshenko (more advanced topic: described in Chapter 13 but not covered in course) IFEM Ch 12 – Slide 4

  5. Introduction to FEM Plane Beam Terminology y, v q(x) y, v Beam cross section x, u z Neutral axis Neutral L Symmetry surface plane IFEM Ch 12 – Slide 5

  6. Introduction to FEM Common Support Conditions ������ Simply Supported ������ ������ Cantilever IFEM Ch 12 – Slide 6

  7. Introduction to FEM Basic Relations for Bernoulli-Euler Model of Plane Beam � − v ′ � � − θ � � − ∂v ( x ) y y y u ( x , ) � � � y ∂ x = = = y v ( x , ) v ( x ) v ( x ) v ( x ) ∂ x = − ∂ 2 v ∂ x 2 = − d 2 v e = ∂ u y y dx 2 = − κ y σ = Ee = − E d 2 v y dx 2 = − E κ y M = E I κ Plus equilibrium equation M'' = q (not used specifically in FEM) IFEM Ch 12 – Slide 7

  8. Introduction to FEM Kinematics of Bernoulli-Euler Beam Cross section P' ( x+u,y+v ) θ =dv/dx = v' y, v v ( x,y )= v ( x, 0) x, u y x P ( x,y ) IFEM Ch 12 – Slide 8

  9. Introduction to FEM Tonti Diagram for Bernoulli-Euler Model of Plane Beam (Strong Form) Displacement Prescribed Distributed Transverse BCs end transverse load displacements v(x) displacements q(x) κ = v'' Kinematic M''=q Equilibrium M = EI κ Bending Force BCs Prescribed Curvature moment end loads κ (x) Constitutive M(x) IFEM Ch 12 – Slide 9

  10. Introduction to FEM Total Potential Energy of Beam Member � = U − W Internal External � L � L � 2 � ∂ 2 v � U = 1 σ xx e xx dV = 1 M κ dx = 1 E I dx 2 2 2 ∂ x 2 V 0 0 � L E I κ 2 dx = 1 Internal energy due to bending 2 0 � L W = q v dx . External energy due to transverse load q 0 IFEM Ch 12 – Slide 10

  11. Introduction to FEM Degrees of Freedom of Plane Beam Element θ 2 v 2 θ 1 v 1 2 1 v 1   θ 1 u e =   v 2   θ 2 IFEM Ch 12 – Slide 11

  12. Introduction to FEM Bernoulli-Euler Kinematics of Plane Beam Element θ 2 P' ( x+u,y+v ) y, v v 2 θ 1 v E, I 1 x, u 1 2 x ℓ P ( x,y ) IFEM Ch 12 – Slide 12

  13. Introduction to FEM Shape Functions in Terms of Natural Coordinate ξ v 1   θ 1 v e = [ N e  = N u e v 1 N e θ 1 N e v 2 N e θ 2 ]   v 2  θ 2 ξ = 2 x Introduce the natural ℓ − 1 (isoparametric) coordinate N (ξ) = (1 − ξ) (2 + ξ) N (ξ) = (1 + ξ) (2 − ξ) e 2 2 e 1 1 v 1 v 2 4 4 N (ξ) = − (1 + ξ) (1 − ξ) N (ξ) = (1 − ξ) (1 + ξ) 2 e 2 e 1 1 ℓ ℓ θ 1 θ2 8 8 Plots on next slide IFEM Ch 12 – Slide 13

  14. Introduction to FEM Element Shape Function Plots v = 1 N (ξ) e 1 N (ξ) = (1 − ξ) (2 + ξ) 2 v 1 e 1 v 1 4 θ = 1 1 N (ξ) e N (ξ) = (1 − ξ) (1 + ξ) e 2 θ 1 1 ℓ θ 1 8 v = 1 N (ξ) e 2 N (ξ) = (1 + ξ) (2 − ξ) e 2 v 2 1 v 2 4 θ = 1 2 N (ξ) = − (1 + ξ) (1 − ξ) 2 e 1 ℓ θ2 N (ξ) e 8 θ2 ξ = 1 ξ = −1 IFEM Ch 12 – Slide 14

  15. Introduction to FEM Getting Curvatures from Displacement Interpolation 0 2 2 2 2 e d v ( x ) d N d u d N κ = = u + N = u e e dx 2 dx 2 dx 2 dx 2 v 1 e e e e 2 2 2 2 d N d N d N d N θ 1 θ2 = = B u θ 1 def v 1 v 2 � � e dx 2 v 2 dx 2 dx 2 dx 2 θ 2 Applying the chain rule 1 x 4 curvature- d f ( x ) d f ( ξ ) d ξ 2 d f ( ξ ) displacement = matrix = dx d ξ dx ℓ d ξ 0 2 ր d f ( x ) d (2/ ℓ ) d f ( ξ ) 2 d d f ( ξ ) 4 d f ( ξ ) 2 2 � � = + = dx dx d ξ ℓ dx d ξ ℓ d ξ 2 to differentiate the shape functions we get 6 ξ − 6 ξ B = 1 3 ξ − 1 3 ξ + 1 � � ℓ ℓ ℓ IFEM Ch 12 – Slide 15

  16. Introduction to FEM Element Stiffness and Consistent Node Forces Varying the element TPE 2 u e T K e u e − u e T f e � e = 1 we get � ℓ � 1 E I B T B dx = E I B T B 1 K e 2 ℓ d ξ = 0 − 1 � ℓ � 1 N T q dx = N T q 1 f e = 2 ℓ d ξ 0 − 1 IFEM Ch 12 – Slide 16

  17. Introduction to FEM Analytical Computation of Prismatic Beam Element Stiffness ("prismatic" means constant EI ) 36 ξ 2 6 ξ (3 ξ − 1)` − 36 ξ 2 6 ξ (3 ξ + 1) ℓ   � 1 (3 ξ − 1) 2 ℓ 2 − 6 ξ (3 ξ − 1) ℓ (9 ξ 2 − 1) ℓ 2 = E I   K e  d ξ   36 ξ 2 − 6 ξ (3 ξ + 1) ℓ 2 ℓ 3   − 1  (3 ξ + 1) 2 ℓ 2 symm 12 6 ℓ − 12 6 ℓ   4 ℓ 2 2 ℓ 2 = E I − 6 ℓ   ℓ 3 12 − 6 ℓ   4 ℓ 2 symm IFEM Ch 12 – Slide 17

  18. Introduction to FEM Mathematica Script for Symbolic Computation of Prismatic Plane Beam Element Stiffness ClearAll[EI,l, Ξ ]; B={{6* Ξ ,(3* Ξ -1)*l,-6* Ξ ,(3* Ξ +1)*l}}/l^2; Ke=(EI*l/2)*Integrate[Transpose[B].B,{ Ξ ,-1,1}]; Ke=Simplify[Ke]; Print["Ke for prismatic beam:"]; Print[Ke//MatrixForm]; Ke for prismatic beam: �  EI  EI �  EI  EI � � � � � l  l  �������� ������� �������� l  ���� �������� ������� �������� l  ���� � � � � � � � � � �  EI �  EI �  EI  EI � � � � � l  l  �������� ���� �������� ����� �������� ���� �������� ���� � � l l � � � � � � � � �  EI �  EI  EI �  EI � � � � � l  l  l  l  � �������� ������� �������� ���� �������� ������� �������� ���� � � � � � � � �  EI  EI  EI �  EI � � l  l  �������� ���� �������� ���� �������� ���� �������� ����� l l Corroborates the result from hand integration. IFEM Ch 12 – Slide 18

  19. Introduction to FEM Analytical Computation of Consistent Node Force Vector for Uniform Load q 4 ( 1 − ξ 2 2 + ξ 1 ) ) (   � 1 � 1 8 ℓ ( 1 − ξ ) 2 1 + ξ 1 ( ) d ξ   f e = 1 d ξ = 1 2 q ℓ N 2 q ℓ   1 + ξ ) 2 2 − ξ 1   ( ) 4 ( − 1 − 1   2 1 − ξ 8 ℓ ( 1 + ξ ) − 1 ) ( 1   2 1 12 ℓ   = q ℓ   1 "fixed end moments"    2  − 1 12 ℓ IFEM Ch 12 – Slide 19

  20. Introduction to FEM Mathematica Script for Computation of Consistent Node Force Vector for Uniform q ClearAll[q,l, Ξ ] Ne={{2*(1- Ξ )^2*(2+ Ξ ), (1- Ξ )^2*(1+ Ξ )*l, 2*(1+ Ξ )^2*(2- Ξ ),-(1+ Ξ )^2*(1- Ξ )*l}}/8; fe=(q*l/2)*Integrate[Ne,{ Ξ ,-1,1}]; fe=Simplify[fe]; Print["fe^T for uniform load q:"]; Print[fe//MatrixForm]; fe^T for uniform load q: l  q l  q � l q l q  � ������� ����������� ������� � �����������    Force vector printed as row vector to save space. IFEM Ch 12 – Slide 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend