a class of finite volume schemes for the 2d shallow water
play

A class of finite volume schemes for the 2D shallow water equations - PowerPoint PPT Presentation

A class of finite volume schemes for the 2D shallow water equations with Coriolis force E. Audusse 1 , V. Dubos 2 , A. Duran 3 , N. Gaveau 4 , Y. Nasseri 5 , Y.Penel 2 1 Universit Paris 13, LAGA, CNRS, UMR 7539, Institut Galile Villetaneuse,


  1. A class of finite volume schemes for the 2D shallow water equations with Coriolis force E. Audusse 1 , V. Dubos 2 , A. Duran 3 , N. Gaveau 4 , Y. Nasseri 5 , Y.Penel 2 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inria–Paris, Sorbonne Universités, UPMC Univ. Paris 06 and CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, France. 3 Institut Camille Jordan, Université Claude Bernard Lyon 1, France. 4 Institut Denis Poisson, Université d’Orléans, Université de Tours, CNRS, France. 5 Institut de Mathématique de Marseille, Aix-Marseille Université, France. August 22, 2019 CEMRACS 2019 V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 1 / 17

  2. SW equations with Coriolis source term Ω being an open bounded domain of R 2 , flat bottom and T > 0 .  ∂ t h + ∇ · ( h u ) = in Ω × ( 0 , T ) , 0   − ω h u ⊥ , ∂ t ( h u )+ ∇ · ( h u ⊗ u )+ g h ∇ h = in Ω × ( 0 , T ) ,    u · n = on ∂ Ω × ( 0 , T ) , 0 h ( x , 0 ) = in Ω ,  h 0    u ( x , 0 ) = in Ω . u 0  Energy balance equation: ∂ t E + ∇ · (( 1 2 | u | 2 + gh ) h u ) = 0 , with E = 1 2 g h 2 + 1 2 h | u | 2 . V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 2 / 17

  3. Linearised SW equations with Coriolis source term Linear equations around u 0 = 0 and h 0 >0: � ∂ t h + h 0 ∇ · u = in Ω × ( 0 , T ) , 0 − ω u ⊥ , ∂ t u + g ∇ h = in Ω × ( 0 , T ) . Energy balance equation: ∂ t E + ∇ · ( E u ) = 0 , with E = 1 2 g h 2 + 1 2 | u | 2 Geostrophic equilibrium: g ∇ h + ω u ⊥ = 0 . V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 3 / 17

  4. Linearised SW equations with Coriolis source term Geostrophic equilibrium: g ∇ h + ω u ⊥ = 0 . Source : M. H. Do, Mathematical analysis of finite volume schemes for the simulation of quasi-geostrophic flows at low Froude number, 2017. V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 3 / 17

  5. Outline Aim : 2D entropic scheme, consistent kernel with geostrophic equilibrium. State of art 1 Inaccuracy of the classic Godunov scheme Linearised SW with Coriolis source term Energy dissipative scheme for SW Collocated semi-discrete scheme 2 Modified equations Non-linear equations Linear equations Mixed semi-discrete scheme 3 Non-linear scheme Linear scheme V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 4 / 17

  6. Inaccuracy of the classical Godunov scheme Modified equations:  ∂ t r + a ⋆ ∇ · u − κ r a ⋆ (∆ x ∂ 2 x r +∆ y ∂ 2 y r ) = 0  ∂ t u + a ⋆ ∇ x r − κ u a ⋆ ∆ x ∂ 2 = ω v x u ∂ t v + a ⋆ ∇ y r − κ u a ⋆ ∆ y ∂ 2 = − ω u y v  Source : E. Audusse, M. H. Do, P . Omnes, and Y. Penel [1] V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 5 / 17

  7. Linearised SW with Coriolis source term [1] E. Audusse, M. H. Do, P . Omnes, and Y. Penel, Analysis of modified godunov type schemes for the two-dimensional linear wave equation with coriolis source term on cartesian meshes , JCP , 2018. Cell-centered semi-discrete scheme d r i , j ( t ) � � �� ∇ h r h + ω a ∗ u ⊥ + a ∗ [ ∇ h · u h ] i , j − ν r ∇ h · = 0 , h dt i , j d u i , j ( t ) = − ω u ⊥ + a ∗ [ ∇ h r h ] i , j − ν u [ ∇ h ( ∇ h · u h )] i , j i , j . dt preserves geostrophic equilibrium, ( ∇ h r h + ω a ∗ u ⊥ h = 0 ) = ⇒ ( ∇ h · u h = 0 ) , full discrete energy dissipation ( ν r = 0), vertex-based version. V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 6 / 17

  8. Energy dissipative scheme for SW [2] F . Couderc, A. Duran and J.-P . Vila, An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification , JCP , 2017. Colocated explicit version K − ∆ t h n + 1 = h n F n m K ∑ e · � n e , K m e , K e ∈ ∂ K K − ∆ t � n e , K ) − � h n + 1 u n + 1 = h n K u n u n K ( F n n e , K ) + − u n K e ( F n m K ∑ e · � e · � m e K K e ∈ ∂ K � − ∆ t � h e = 1 h ∗ , n gh n K ∑ � 2 ( h K + h K e ) � n e , K m e . e � m K e ∈ ∂ K V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 7 / 17

  9. Energy dissipative scheme for SW Colocated explicit version K − ∆ t h n + 1 = h n m K ∑ F n e · � n e , K m e , K e ∈ ∂ K K − ∆ t � n e , K ) − � h n + 1 u n + 1 = h n K u n m K ∑ u n K ( F n n e , K ) + − u n K e ( F n e · � e · � m e K K e ∈ ∂ K � h e = 1 � − ∆ t h ∗ , n gh n � K ∑ 2 ( h K + h K e ) � n e , K m e . e � m K e ∈ ∂ K F n e = ( h u ) n e − γ g Π n Π n � h n K e − h n � � , e − → ∇ e [ h ] = n e , K . e K h ∗ e = h n e − α Λ n Λ n � h u n K e − h u n � e − → ∇ e · [ h u ] = · � , n e , K . e K V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 7 / 17

  10. Proposed scheme Semi-discrete scheme d h K � = − ∇ K · F dt d h K u K − ∇ up K · ( u , F ) − gh K ∇ K h − ω h K u ⊥ K + ω Π ⊥ = dt K where : | i | u K ( F K , i · e K , K i ) + + u i ( F K , i · e K , K i ) − � ∇ up ∑ � K · ( u , F ) = | K | i ∈{ e , w , n , s } ∇ K · F = F K , e − F K , w · e 1 + F K , n − F K , s · e 2 2 ∆ x 2 ∆ y ∇ K h = h e − h w e 1 + h n − h s 2 ∆ y e 2 2 ∆ x F K , i = 1 2 ( h K u K + h i u i − Π K − Π i ) Π K = γ ∆ t h k ( g ∇ K h + ω u ⊥ K ) V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 8 / 17

  11. Modified equations associated scheme Semi-discrete scheme d � = − ∇ K · h u K + ∇ K · Π K dt h k − ∇ up d K · ( u , F ) − gh K ∇ K h − ω h u ⊥ K + ω Π ⊥ = dt h K u K K with Π K = γ ∆ t h k ( g ∇ K h + ω u ⊥ K ) Modified non linear equations � ∂ t h = − ∇ · h u + ∇ · Π − ∇ · ( F ⊗ u ) − g h ∇ h − ω h u ⊥ + ω Π ⊥ ∂ t ( h u ) = where : Π = γ ∆ t ( g h ∇ h + ω h u ⊥ ) . Mechanic energy balance of the modified equations : � � 1 ( gh + 1 2 ( gh 2 + h u 2 ) � 2 . � g h ∇ h + ω h u ⊥ � 2 | u | 2 ) h u � � � ∂ t + ∇ · = − γ ∆ t V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 9 / 17

  12. Energy of the scheme � � d 1 � � = ∑ gh K ∇ K · Π + ω Π ⊥ 2 ( gh 2 K + h K | u | 2 ∑ K ) | K | K · u K + R K dt K ∈ T K ∈ T where R K = 1 1 | e |� u Ke − u K � 2 ( F e · n e , K ) − ≤ 0 | K | ∑ 2 e ∈ ∂ K K u K ) = − ∑ ( gh K ∇ K · Π + ω Π ⊥ (( g ∇ K h + ω u ⊥ ∑ K ) · Π K ) ≤ 0 K ∈ T K ∈ T Π K = γ ∆ t ( g h K ∇ K h + ω h u ⊥ ) . thanks to the grad-div duality, preserved by our discretisations Energy decreasing property � � d 1 2 ( gh 2 K + h K | u | 2 ∑ K ) ≤ 0 dt K ∈ T V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 10 / 17

  13. Linearisation of the scheme Semi-discrete linearised scheme around h 0 > 0 and u 0 = 0 d dt h K + ∇ K · ( h 0 u K − Π K ) = 0, d − ω ( h 0 u K − Π K ) ⊥ . dt u K + g h 0 ∇ K h = h 0 where : Π K = h 0 γ ∆ t ( g ∇ K h + ω u ⊥ K ) . Remark : Very similar to Audusse and al [1]. � ∂ t h + ∇ · F = 0 , Modified equations associated: − ω F ⊥ , ∂ t h 0 u + g h 0 ∇ h = where: F = h 0 u − γ ∆ t h 0 ( g ∇ h + ω u ⊥ ) . Geostrophic equlibrium : g ∇ h + ω u ⊥ = 0 V. Dubos, N. Gaveau, Y. Nasseri ( 1 Université Paris 13, LAGA, CNRS, UMR 7539, Institut Galilée Villetaneuse, France. 2 Team ANGE, Inr FV schemes for Shallow Water with Coriolis force CEMRACS 2019 August 22, 2019 11 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend