well balanced and positivity preserving dg schemes for
play

Well-Balanced and Positivity Preserving DG Schemes for Shallow Water - PowerPoint PPT Presentation

Well-Balanced and Positivity Preserving DG Schemes for Shallow Water Flows with Shock Capturing by Adaptive Filtering Procedures Sigrun Ortleb 1 , Andreas Meister 1 , Thomas Sonar 2 1 Mathematics and Natural Sciences, University of Kassel, Germany


  1. Well-Balanced and Positivity Preserving DG Schemes for Shallow Water Flows with Shock Capturing by Adaptive Filtering Procedures Sigrun Ortleb 1 , Andreas Meister 1 , Thomas Sonar 2 1 Mathematics and Natural Sciences, University of Kassel, Germany 2 Computational Mathematics, TU Braunschweig, Germany HYP 2012

  2. The 2D Shallow Water Equations H water height b bottom elevation ∂ u ∂ t + ∇ · F ( u ( x , t )) = s ( u , x , t ) u = ( H , Hv 1 , Hv 2 ) T , ∂ x f 1 + ∂ ∂ Where ∇ · F = ∂ y f 2 ,     Hv 1 Hv 2 Hv 2 1 + 1 2 gH 2  ,  , f 1 = f 2 = Hv 1 v 2   Hv 2 2 + 1 2 gH 2 Hv 1 v 2 (0 , − gHb x , − gHb y ) T s =

  3. SWE – Challenges for a numerical scheme Shock capturing, Well-balancedness, Positivity preservation Xing, Zhang, Shu ’10: 3rd order DG scheme on cartesian grids, WB + PP, Limiters Bryson, Epshteyn, Kurganov, Petrova ’10: 2nd order central-upwind scheme on triangular grids, WB + PP, Limiters In this talk: 3rd order WB and PP DG scheme on triangular grids Shock capturing by (low cost) filtering procedures ∗ , + Positivity preservation for implicit time integration ∗ Joint work with: ∗ Andreas Meister (Univ. Kassel) + Thomas Sonar (TU Braunschweig)

  4. The DG Scheme for SWE Ω u h ( · , t ) T h = { τ 1 , τ 2 , . . . , τ # T h } Triangulation Triangulation of computational domain Piecewise polynomial approximation u h ( x , t ) of degree N Variational formulation in space DG advantages: conservative method, highly local, unstructured grids easy to implement

  5. The DG Scheme for SWE Variational formulation � � � � d u Φ d x + F ( u ) · n Φ d σ − F ( u ) · ∇ Φ d x = s Φ d x dt ↑ ↑ ↑ ↑ τ i ∂τ i τ i τ i F num ( u − h , u + h , n ) F ( u h ) u h s h

  6. The DG Scheme for SWE Variational formulation � � � � d F num ( u − h , u + u h Φ d x + h , n ) Φ d σ − F ( u h ) ·∇ Φ d x = s h Φ d x dt τ i ∂τ i τ i τ i Use orthogonal polynomials q ( N ) � u i ˆ u h | τ i ( x , t ) = k ( t )Φ k ( x ) , q ( N ) = ( N + 1)( N + 2) / 2 k =1 Semidiscrete equation for coefficients → explicit RK method � � � � d u i F num ( u − h , u + / � Φ k � 2 dt ˆ = − h , n ) Φ k d σ + F ( u h ) · ∇ Φ k d x L 2 k ∂τ i τ i � s h Φ k d x / � Φ k � 2 + L 2 τ i Quadrature rules

  7. The DG Scheme for SWE Variational formulation � � � � d F num ( u − h , u + u h Φ d x + h , n ) Φ d σ − F ( u h ) ·∇ Φ d x = s h Φ d x dt τ i ∂τ i τ i τ i Use orthogonal polynomials q ( N ) � u i ˆ u h | τ i ( x , t ) = k ( t )Φ k ( x ) , q ( N ) = ( N + 1)( N + 2) / 2 k =1 Semidiscrete equation → Time integration: RK method � � � � d u i F num ( u − h , u + / � Φ k � 2 dt ˆ = − h , n ) Φ k d σ + F ( u h ) · ∇ Φ k d x L 2 k ∂τ i τ i � s h Φ k d x / � Φ k � 2 + L 2 τ i Quadrature rules

  8. Orthogonal Proriol-Koornwinder-Dubiner Basis � � � 1 − s � l 21 + r Φ lm ( r , s ) = P 0 , 0 P 2 l +1 , 0 1 − s − 1 ( s ) , l + m ≤ N m l 2 P α,β Jacobi polynomials n Defined on reference element T T = { ( r , s ) ∈ R 2 | − 1 ≤ r , s ; r + s ≤ 0 } Proriol (1957), Koornwinder (1975), Dubiner (1991)

  9. New Modal Filtering Approach Damping step: Carried out after each time step � � 2 p � � l + m − const · N ∆ t u i , mod u i ˆ = exp ˆ lm lm h i N � − α i · η 2 p � � Multiplication by filter function σ ( η ) = exp Resulting from SV modified equation on T Meister, Ortleb, Sonar: - On Spectral Filtering for Discontinuous Galerkin Methods on Unstructured Triangular Grids, NMPDE, ’11 - New Adaptive Modal and DTV Filtering Routines for the DG Method on Triangular Grids applied to the Euler Equations, GEM, ’12

  10. Shock Indication and Adaptivity u i , mod u i ˆ = σ ( η ) · ˆ lm lm � − s i α i η 2 p � σ ( η ) = exp Modified filter function Resolution indicator ω res � u i lm ) 2 (ˆ � ˜ if ˜ s i > tol s i l + m = N ω res = s i = � i lm ) 2 + ǫ 0 otherwise u i (ˆ l + m < N tol = 0 . 01 � 1000(5 N 4 + 1) ω res � ˜ s i = min , 1 i Persson, Peraire ’06; Barter, Darmofal ’07

  11. Circular Dam-Break Problem Computational domain: [0 , 40] × [0 , 40] Initial conditions: � 2 . 5 if ( x − 20) 2 + ( y − 20) 2 ≤ 2 . 5 2 H ( x , y , 0) = 0 . 5 else Boundaries: outflow conditions

  12. Circular Dam-Break Problem Modally filtered DG solution: Water height N = 6 , K = 2200. α i = 2 N ∆ t h i , p = 1. t = 0 . 4 t = 0 . 7 t = 1 . 4

  13. Circular Dam-Break Problem Modally filtered DG solution: Water height N = 6 , K = 2200. α i = 2 N ∆ t h i , p = 1. t = 3 . 5 t = 4 . 7

  14. DTV Filtering on Non-Cartesian Graphs U (0) = [ u h ( x j )] j ∈ DTV nodes for k = 0,1,2,. . . U ( k +1) = DTV ( U ( k ) ) Meister, Ortleb, Sonar ’11 t = 0 . 4: before DTV filtering after DTV filtering

  15. Circular Dam-Break Problem DTV filtered solutions: Water height N = 6 , K = 2200. 49 subtris, λ = 1. t = 0 . 4 t = 0 . 7 t = 1 . 4

  16. Circular Dam-Break Problem DTV filtered solutions: Water height N = 6 , K = 2200. 49 subtris, λ = 1. t = 3 . 5 t = 4 . 7

  17. Well-balanced Scheme � � � � d F WB ( u − ∗ , u + ∗ , H − , n ) Φ d σ − u h Φ d x + F ( u h ) ·∇ Φ d x = s h Φ d x dt τ i ∂τ i τ i τ i   0 � ( H − ) 2 − ( H − ∗ ) 2 � ∗ , u + ∗ , u + n 1 g F WB ( u − ∗ , H − , n ) = F num ( u − ∗ , n ) +   2 � ( H − ) 2 − ( H − ∗ ) 2 � n 2 g 2 Hydrostatic reconstruction Audusse et al. ’04 u ± ( H ± ∗ , H ± ∗ · ( v 1 ) ± , H ± ∗ · ( v 2 ) ± ) T , = ∗ � 0 , H ± + b ± − max � b − , b + �� H ± = max ∗

  18. Well-balanced Scheme � � � � d ∗ , u + F WB ( u − u h Φ d x + ∗ , H − , n ) Φ d σ − F ( u h ) ·∇ Φ d x = s h Φ d x dt τ i ∂τ i τ i τ i   0 � ( H − ) 2 − ( H − ∗ ) 2 � n 1 g F WB ( u − ∗ , u + ∗ , H − , n ) = F num ( u − ∗ , u + ∗ , n ) +   2 � ∗ ) 2 � ( H − ) 2 − ( H − n 2 g 2 Hydrostatic reconstruction Audusse et al. ’04 Higher order quadrature necessary � 1 � 2 gH 2 � � � x Φ d x = τ gHH x Φ d x = − τ gHb x Φ d x τ � � � − 1 � lm ) 2 · lm ) 2 + ǫ WB filter: Indicator ω res u i u i = (ˆ (ˆ i l + m = N l + m < N lm = ˆ lm + ˆ u i H i b i now depending on ˆ lm

  19. Small Perturbation Test Smooth bottom elevation on Ω = [0 , 2] × [0 , 1] : b ( x ) = 0 . 8 e − 5( x − 0 . 9) 2 − 50( y − 0 . 5) 2 Initial water height � 1 − b ( x ) + 0 . 01 , if 0 . 05 ≤ x ≤ 0 . 15 , H ( x , 0) = 1 − b ( x ) , else . Initial velocity: v = 0

  20. Small Perturbation Test Water surface w = H + b (for N = 2 , K = 46360 , α i = 5 N ∆ t h i , p = 1) t = 0 . 12 t = 0 . 24 t = 0 . 36 t = 0 . 48 Problem: boundary conditions (30 contour levels from 0 . 99 to 1 . 01)

  21. Positivity Treatment Xing/Zhang/Shu-approach assumes Non-negative cell means ¯ H n i at time t n Positivity preserving flux (e.g. HLL, Lax-Friedrichs) Non-negative values of H at certain quadrature nodes Zhang, Xia, Shu ’11: Maximum-principle-satisfying and PP DG schemes on triangular grids (scalar & Euler equations) ⇒ Non-negative cell means at next time level t n +1 � i − ∆ t H n +1 ¯ = ¯ H n F WB ( u n , − , u n , + , n ) d σ 1 ∗ ∗ i | τ i | ∂τ i Under suitable CFL-like time step restriction

  22. Positivity Treatment Xing/Zhang/Shu-approach assumes Non-negative cell means ¯ H n i at time t n Positivity preserving flux (e.g. HLL, Lax-Friedrichs) Non-negative values of H at certain quadrature nodes ⇒ Non-negative cell means at next time level t n +1 � i − ∆ t H n +1 ¯ = ¯ ( u n , − , u n , + H n F WB , n ) d σ 1 ∗ ∗ i | τ i | ∂τ i Under suitable CFL-like time step restriction � if H < 10 − 6 0 Comp. velocities via v = 2 H · ( H v ) else (Bryson et al.) H 2 +max { H 2 ,ǫ } � − s i α i η 2 p � u i , mod u i Filter modification: ˆ = exp · ˆ lm lm H i ) − 1 · min � 1000(5 N 4 + 1) ω res � s i = (¯ , 0 i

  23. Oscillating Lake Paraboloidal vessel on Ω = [ − 2 , 2] 2 : b ( x ) = 0 . 1( x 2 + y 2 ) . 2D cut at y = 0 Periodic analytical solution known H ( x , t ) = max { 0 , 0 . 05(2 x cos( ω t ) + 2 y sin( ω t )) + 0 . 075 − b ( x )) } , v 1 ( x , t ) = − 0 . 1 ω sin( ω t ) , � v 2 ( x , t ) = 0 . 1 ω cos( ω t ) , ω = 0 . 2 g

  24. Oscillating Lake Water surface w = H + b (for N = 2 , K = 23138 , α i = 10 N ∆ t h i , p = 1) t = T per / 6 t = T per / 3 t = T per / 2 t = T per

  25. Positivity Treatment – Implicit Euler Case Extension of Xing/Zhang/Shu-approach Non-negative cell means ¯ H n i at time t n Positivity preserving flux (e.g. HLL, Lax-Friedrichs) Non-negative values of H at certain quadrature nodes ⇒ Non-negative cell means at next time level t n +1 � i − ∆ t H n +1 ¯ = ¯ ( u n +1 , − , u n +1 , + H n F WB , n ) d σ 1 ∗ ∗ i | τ i | ∂τ i No time step restriction! Implicit Euler is unconditionally SSP Higueras ’05

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend