well balanced asymptotic preserving schemes for singular
play

Well-balanced asymptotic preserving schemes for singular limit flows - PowerPoint PPT Presentation

Well-balanced asymptotic preserving schemes for singular limit flows Mria Lukov Johannes Gutenberg-Universitt Mainz K.R. Arun (Trivandrum), S. Noelle (RWTH Aachen), L. Yelash & G. Bispen (JGU Mainz), A. Mller & F. Giraldo


  1. Well-balanced asymptotic preserving schemes for singular limit flows Mária Lukáčová Johannes Gutenberg-Universität Mainz K.R. Arun (Trivandrum), S. Noelle (RWTH Aachen), L. Yelash & G. Bispen (JGU Mainz), A. Müller & F. Giraldo (Monterey)

  2. Application Meteorology: Cloud Simulation Gravity induces hydrostatic balance How do clouds evolve over long periods of time? M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 1 / 49

  3. Multiscale phenomena of oceanographical, atmospherical flows -wave speeds differ by several orders: � u � << c ⇒ M , Fr : = � u � << 1 c -typically Fr ≈ 10 − 2 M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 2 / 49

  4. Multiscale phenomena of oceanographical, atmospherical flows -wave speeds differ by several orders: � u � << c ⇒ M , Fr : = � u � << 1 c -typically Fr ≈ 10 − 2 max ( | u | + c , | v | + c ) ∆ t ≤ 1 ∆ x M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 2 / 49

  5. Multiscale phenomena of oceanographical, atmospherical flows -wave speeds differ by several orders: � u � << c ⇒ M , Fr : = � u � << 1 c -typically Fr ≈ 10 − 2 max ( | u | + c , | v | + c ) ∆ t ≤ 1 ∆ x � ∆ t �� � � 1 + 1 u 2 + v 2 ∆ x ≤ 1 max Fr - number of time steps O ( 1/ Fr ) -low Mach / low Froude number problem [ Bijl & Wesseling (’98), Klein et al.(’95, ’01), Meister (’99,01), Munz &Park (’05), Degond et al. (’11) . . . ] M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 2 / 49

  6. Accuracy problem - numerical viscosity of upwind methods depends on Fr - truncation error grows as Fr → 0 [Guillard, Viozat (’99), Rieper (’10)] - AIM: reduce adverse effect of 1 + 1/ Fr large time step scheme: ∆ t does not depends on Fr efficient scheme for advection effects stability and accuracy of the scheme is independent on Fr M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 5 / 49

  7. Asymptotic preserving schemes Goal: Derive a scheme, which gives a consistent approximation of the limiting equations for ε = Fr → 0 [ S.Jin&Pareschi(’01), Gosse&Toscani(’02), Degond et al.(’11), . . . ] M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 6 / 49

  8. Asymptotic preserving schemes Goal: Derive a scheme, which gives a consistent approximation of the limiting equations for ε = Fr → 0 [ S.Jin&Pareschi(’01), Gosse&Toscani(’02), Degond et al.(’11), . . . ] - to illustrate the idea: shallow water eqs. - z = h + b , h - water depth, z - mean sea level to the top surface, b - mean sea level to the bottom ( b ≤ 0 ) M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 6 / 49

  9. Asymptotic preserving schemes Goal: Derive a scheme, which gives a consistent approximation of the limiting equations for ε = Fr → 0 [ S.Jin&Pareschi(’01), Gosse&Toscani(’02), Degond et al.(’11), . . . ] - to illustrate the idea: shallow water eqs. - z = h + b , h - water depth, z - mean sea level to the top surface, b - mean sea level to the bottom ( b ≤ 0 ) ∂ t z + ∂ x m + ∂ y n = 0 1 1 ∂ t m + ∂ x ( m 2 / ( z − b )) + ∂ y ( mn / ( z − b )) + 2 Fr 2 ∂ x ( z 2 ) = Fr 2 b ∂ x z 1 1 ∂ t n + ∂ x ( mn / ( z − b )) + ∂ y ( n 2 / ( z − b )) + 2 Fr 2 ∂ y ( z 2 ) = Fr 2 b ∂ y z M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 6 / 49

  10. Asymptotic expansion -rigorous analysis [Klainerman & Majda (’81), Feireisl & Novotn´ y (2009, 2013)] -formally: ( ε = Fr ) z ε ( x , t ; ε ) = z ( 0 ) ( x , t ) + ε z ( 1 ) ( x , t ) + ε 2 z ( 2 ) ( x , t ) u ε ( x , t ; ε ) = u ( 0 ) ( x , t ) + ε u ( 1 ) ( x , t ) + ε 2 u ( 2 ) ( x , t ) M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 7 / 49

  11. Asymptotic expansion -rigorous analysis [Klainerman & Majda (’81), Feireisl & Novotn´ y (2009, 2013)] -formally: ( ε = Fr ) z ε ( x , t ; ε ) = z ( 0 ) ( x , t ) + ε z ( 1 ) ( x , t ) + ε 2 z ( 2 ) ( x , t ) u ε ( x , t ; ε ) = u ( 0 ) ( x , t ) + ε u ( 1 ) ( x , t ) + ε 2 u ( 2 ) ( x , t ) plug into the SWE = ⇒ z ( 0 ) = z ( 0 ) ( t ) ; ∂ x ( h ( 0 ) + b ) = 0 ∂ x h ( 1 ) = 0 ∂ t z ( 0 ) = ∂ x ( h ( 0 ) u ( 0 ) ) ≡ ∂ x m ( 0 ) ∂ t m ( 0 ) + ∂ x ( h ( 0 ) ( u ( 0 ) ) 2 ) + h ( 0 ) ∂ x z ( 2 ) = 0 M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 7 / 49

  12. Asymptotic expansion -rigorous analysis [Klainerman & Majda (’81), Feireisl & Novotn´ y (2009, 2013)] -formally: ( ε = Fr ) z ε ( x , t ; ε ) = z ( 0 ) ( x , t ) + ε z ( 1 ) ( x , t ) + ε 2 z ( 2 ) ( x , t ) u ε ( x , t ; ε ) = u ( 0 ) ( x , t ) + ε u ( 1 ) ( x , t ) + ε 2 u ( 2 ) ( x , t ) plug into the SWE = ⇒ z ( 0 ) = z ( 0 ) ( t ) ; ∂ x ( h ( 0 ) + b ) = 0 ∂ x h ( 1 ) = 0 ∂ t z ( 0 ) = ∂ x ( h ( 0 ) u ( 0 ) ) ≡ ∂ x m ( 0 ) ∂ t m ( 0 ) + ∂ x ( h ( 0 ) ( u ( 0 ) ) 2 ) + h ( 0 ) ∂ x z ( 2 ) = 0 limiting system as ε → 0 ( ∂ t b = 0 ) h ( 0 ) ( x ) = b ( x ) + const . (1) ∂ t h ( 0 ) = ∂ x m ( 0 ) ∂ t u ( 0 ) + u ( 0 ) ∂ x u ( 0 ) + ∂ x z ( 2 ) = 0 Does a numerical scheme give a consistent approximation of (1) ? M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 7 / 49

  13. Time discretization Key idea: - semi-implicit time discretization: splitting into the linear and nonlinear part - linear operator modells gravitational (acoustic) waves are treated implicitly - rest nonlinear terms are treated explicitly M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 8 / 49

  14. Time discretization Key idea: - semi-implicit time discretization: splitting into the linear and nonlinear part - linear operator modells gravitational (acoustic) waves are treated implicitly - rest nonlinear terms are treated explicitly ∂ w ∂ t = −∇ · F ( w ) + B ( w ) ≡ L ( w ) + N ( w ) w = ( z , m , n ) T , z = h + b ; b < 0 M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 8 / 49

  15. Time discretization Key idea: - semi-implicit time discretization: splitting into the linear and nonlinear part - linear operator modells gravitational (acoustic) waves are treated implicitly - rest nonlinear terms are treated explicitly ∂ w ∂ t = −∇ · F ( w ) + B ( w ) ≡ L ( w ) + N ( w ) w = ( z , m , n ) T , z = h + b ; b < 0 − ∂ x ( m ) − ∂ y ( n )   b  Fr 2 ∂ x z  L ( w ) : =     b   Fr 2 ∂ y z M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 8 / 49

  16. • L : spatially varying linear system w t + A 1 ( b ) w x + A 2 ( b ) w y = 0  0 1 0   0 0 1  − 1 ⇒ E L 0 0 0 A 1 = Fr 2 b ( x , y ) 0 0 A 2 = =     ∆ − 1 Fr 2 b ( x , y ) 0 0 0 0 0 Multi-d evolution operator in [Arun, M.L., Kraft, Prasad (2009)] M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 9 / 49

  17. • L : spatially varying linear system w t + A 1 ( b ) w x + A 2 ( b ) w y = 0  0 1 0   0 0 1  − 1 ⇒ E L A 1 = Fr 2 b ( x , y ) A 2 = 0 0 0 = 0 0 ∆     − 1 Fr 2 b ( x , y ) 0 0 0 0 0 Multi-d evolution operator in [Arun, M.L., Kraft, Prasad (2009)] • REST: nonlinear system N z t = 0 1 m t + ( m 2 / ( z − b )) x + 2 Fr 2 ( z 2 ) x + ( mn / ( z − b ))) y = 0 1 n t + ( mn / ( z − b )) x + ( n 2 / ( z − b )) y + 2 Fr 2 ( z 2 ) y = 0 ⇒ E N = ∆ E N ∆ is the evolution along the characteristics or using an approximate Riemann solver M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 10 / 49

  18. � P = ( x, y, t n + ∆ t ) t n t � i t Q 2 r c h s i t θ e Z � t Q 1 ( θ ) y x � n 1 ( θ ) Bicharacteristic scheme for linear operator L 2 M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 11 / 49

  19. Wave propagation for the hyperbolic balance laws Information travels along bicharacteristic curves Integration along each curve + averaging over the cone mantle yields integral representation for the solution at the pick of the cone � P = ( x, y, t n + ∆ t ) t n t � t r i Q 2 h c s t θ i e Z � t Q 1 ( θ ) y x n 1 ( θ ) � M. Luk´ aˇ cov´ a-Medvid’ov´ a, K.W. Morton, and Gerald Warnecke. Finite volume evolution Galerkin methods for hyperbolic systems. J. Sci. Comp. 2004. M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 12 / 49

  20. Back to our linear subsystem L ∂ t w − L ( w ) = 0 − div ( m , n ) T     z b  Fr 2 ∂ z / ∂ x  w : = m L ( w ) : =       n b   Fr 2 ∂ z / ∂ y M´ aria Luk´ aˇ cov´ a (Institute of Mathematics, Uni-Mainz) January, 2014 15 / 49

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend