high order well balanced finite volume schemes for eddy
play

High-order well-balanced finite-volume schemes for eddy computations - PowerPoint PPT Presentation

High-order well-balanced finite-volume schemes for eddy computations in barostrophic jets. Algorithms and numerical comparisons Normann Pankratz IGPM RWTH Aachen Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 1 / 38


  1. High-order well-balanced finite-volume schemes for eddy computations in barostrophic jets. Algorithms and numerical comparisons Normann Pankratz IGPM — RWTH Aachen Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 1 / 38

  2. Outline Well-balanced schemes 1 Application: Geostrophic Flow 2 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 2 / 38

  3. Shallow Water Equations Shallow Water Equations with topography and coriolisforce:        0  h hu hv hu 2 + 1 2 gh 2 hu + + huv = − ghb x − fhv         hv 2 + 1 2 gh 2 hv huv − ghb y + fhu t x y h ( x , y , t ): waterheight b ( x ): topography hu ( x , y , t ): x -momentum g : gravitation constant hv ( x , y , t ): y -momentum f : coriolisforce constant Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 3 / 38

  4. Well-Balanced Schemes First and second order accuracy: Bermudez, Vazquez 1994 Greenberg, LeRoux 1995 Gosse et al. 1998 LeVeque et al. 2000 Gallouet, Seguin 2000 Kurganov, Levy 2003 Klein et al. 2003 Theorem: Audusse, Bristeau, Bouchut, Klein, Perthame 2004 A suitable hydrostatic spatial reconstruction gives positivity of water height discrete entropy inequality (first order scheme) discrete hydrostatic balance ...and many others Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 4 / 38

  5. Well-Balanced Schemes High-order accuracy: Vukovic, Sopta 2002 Xing, Shu 2004 Castro, Garllardo, Pares 2006 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 5 / 38

  6. Well-Balanced Schemes High-order accuracy: Vukovic, Sopta 2002 Xing, Shu 2004 Castro, Garllardo, Pares 2006 Theorem: [NPPN] 2005 Extrapolation gives arbitrary order of accuracy discrete hydrostatic balance Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 5 / 38

  7. Well-Balanced Schemes High-order accuracy: Vukovic, Sopta 2002 Xing, Shu 2004 Castro, Garllardo, Pares 2006 Theorem: [NPPN] 2005 Extrapolation gives arbitrary order of accuracy discrete hydrostatic balance [NPPN] S. Noelle, N. Pankratz, G. Puppo, J. Natvig. Well-balanced finite-volume schemes of arbitary order of accuracy for shallow water flows, J. Comput. Phys. 213 (2006), pp. 474–499. Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 5 / 38

  8. High-Order Upwind Finite-Volumes Semidiscrete upwind finite-volume scheme + source terms ( U ij ) t + 1 2 ) + 1 ∆ x ( F i + 1 2 − F i − 1 ∆ y ( G j + 1 2 − G j − 1 2 ) = S ij numerical flux (LF, LLF, HLL, kinetic, . . . ) F i + 1 2 = F ( U i , r , U i +1 , l ) polynomial reconstruction for η = h + b , hu , and hv reconstruction of surface displacement h r ec = η r ec − b ( x , y ). S ij discretized with extrapolated well-balanced sourceterm Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 6 / 38

  9. Convergence Smooth data, Xing, Shu (2005) : CFL= 0 . 5, g = 9 . 812 = 10 + e sin(2 π x ) cos(2 π y ) , b ( x , y ) = sin(2 π x ) + cos(2 π y ) , η ( x , y ) hu ( x , y ) = sin(cos(2 π x )) sin(2 π y ) , hv ( x , y ) = cos(2 π x ) cos(sin(2 π y )) . number h hu hv CFL L 1 error L 1 error L 1 error of points order order order 25 0.5 8.77E-03 3.42E-02 6.71E-02 50 0.5 1.10E-03 3.00 2.73E-03 3.65 9.40E-03 2.84 100 0.5 9.84E-05 3.48 1.56E-04 4.13 7.85E-04 3.58 200 0.5 4.91E-06 4.32 6.58E-06 4.57 3.93E-05 4.32 400 0.5 1.82E-07 4.76 2.41E-07 4.77 1.46E-06 4.75 800 0.5 6.06E-09 4.91 7.94E-09 4.92 4.90E-08 4.90 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 7 / 38

  10. A small Perturbation of a Lake at Rest � 1 . 01 , x ∈ [0 . 05 , 0 . 15] initial data: η ( x , y ) = 1 , otherwise hu ( x , y ) = 0 , hv ( x , y ) = 0 0 . 8 exp( − 5( x − 0 . 9) 2 − 50( y − 0 . 5) 2 ) b ( x , y ) = 0.8 0.6 0.4 b 0.2 0 1 2 0.5 1 0 0 y x bottom topography Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 8 / 38

  11. Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 9 / 38

  12. Outline Well-balanced schemes 1 Application: Geostrophic Flow 2 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 10 / 38

  13. Ocean flows Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 11 / 38

  14. Ocean flows Main Question: Is there need for modern high resolution schemes? Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 11 / 38

  15. Ocean flows Main Question: Is there need for modern high resolution schemes? We consider geophysical flows a traditional central difference scheme (FD1),(FD2) high-order accurate upwind finite-volume scheme (FV4) Comparison of stability, accuracy, efficiency with J. Natvig, B. Gjevik, S. Noelle (2006) Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 11 / 38

  16. Review Traditional Central Difference Scheme: von Neumann - Richtmayer (1949) used in Lagrangian gas dynamics staggered finite-differences second order accurate Problem: dispersive oscillations Solution: add artificial viscosity Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 12 / 38

  17. Comparison: Convergence Rate Smooth data ( Xing, Shu ) and coriolis force parameter f = 10 . 0 FD1 FD2 FV4 L 1 -error L 1 -error L 1 -error N order order order 25 4.56E-02 3.27E-02 6.70E-03 50 1.69E-02 1.43 8.45E-03 1.95 8.46E-04 2.96 100 7.20E-03 1.23 2.10E-03 2.01 6.84E-05 3.63 200 3.35E-03 1.10 5.26E-04 2.00 3.06E-06 4.48 400 1.63E-03 1.04 1.32E-04 2.00 1.11E-07 4.79 800 8.02E-04 1.02 3.29E-05 2.00 3.66E-09 4.91 L 1 -errors in η and numerical order of accuracy at T = 0 . 05 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 13 / 38

  18. Dispersive Oscillation FD2 FV4 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 14 / 38

  19. Dispersive Oscillation FD2 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 14 / 38

  20. Dispersive Oscillation FV4 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 14 / 38

  21. Eddies in Doubly Periodic Domain 2 nd order staggered grid, day 0 Geostrophically balanced flow: potential vorticity q := ∇× u + f 3 h Initial data: 2 width of jet: 2 a = 1 potential vorticity: 1 q ( x , y , 0) = 0 x � � � q + Q sign(ˆ ¯ y )( a − � | ˆ y | − a � ) , | ˆ y | < 2 a , −1 . q , otherwise , ¯ −2 ˆ y = y − 0 . 1 sin(2 x ) + 0 . 1 sin(3 x ) −3 2 0 −2 y D. Dritschel, L. Polvani, A. Mohebalhojeh, The Contour-Advective Semi-Lagrangian Algorithm for the Shallow Water Equations, Monthly Weather Review , 127, (1999) pp. 1551 - 1565. Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 15 / 38

  22. Eddies in Doubly Periodic Domain, Day 4 FD2 FV4 2 nd order staggered grid, day 4 finite volume 4 th order, day 4 3 3 2 2 1 1 0 0 x −1 −1 −2 −2 −3 −3 2 0 −2 2 0 −2 y potential vorticity after 4 days, 512 x 512 points/cells. Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 16 / 38

  23. Eddies in Doubly Periodic Domain, Day 8 FD2 FV4 2 nd order staggered grid, day 8 finite volume 4 th order, day 8 3 3 2 2 1 1 0 0 x −1 −1 −2 −2 −3 −3 2 0 −2 2 0 −2 y potential vorticity after 8 days, 512 x 512 points/cells. Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 17 / 38

  24. Gulfstream Bj¨ orn Gjevik Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 18 / 38

  25. North Sea Region Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 19 / 38

  26. Coastal Region Bj¨ orn Gjevik Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 20 / 38

  27. Jet in Shelf Area jet with a Gaussian profile Setup: Gjevik, Moe, Ommundsen 0.4 Domain: 300 × 600 km Gridwidth: ∆ x = 1 km 0.3 Coriolis constant: f = 1 . 2 × 10 − 4 y [m/s] 0.2 Jetshape: v jet := γ ( t ) v 0 exp( − 2( x − L B 0.1 ) 2 ) B 0 0 100 200 300 x [km] Growthfactor: shelf profile γ ( t ) := (1 − exp( − σ t )) 200 −200 where σ = 2 . 3148 × 10 − 5 −600 Boundary conditions: −1000 south inflow, −1400 north absorbing, −1800 0 100 200 300 east and west reflective. x [km] Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 21 / 38

  28. Inflow boundary conditions: Two different boundary condition Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 22 / 38

  29. Inflow boundary conditions: Two different boundary condition Naive inflow boundary condition: v = v jet , u = 0 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 22 / 38

  30. Inflow boundary conditions: Two different boundary condition Naive inflow boundary condition: v = v jet , u = 0 creates unphysical discontinuity in tangential velocity reduced convergence rate for FV4 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 22 / 38

  31. Inflow boundary conditions: Two different boundary condition Naive inflow boundary condition: v = v jet , u = 0 creates unphysical discontinuity in tangential velocity reduced convergence rate for FV4 Sundstr¨ om’s boundary condition: (NBC) v = v jet , ∂ x u = 0 Normann Pankratz (Aachen) High-order well-balanced Finite-Volume 22 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend