outline outline
play

Outline Outline Reynolds Equation Reynolds Equation Eddy - PowerPoint PPT Presentation

Outline Outline Reynolds Equation Reynolds Equation Eddy Viscosity Models Eddy Viscosity Models Mixing Length Model Mixing Length Model Near Wall Flows Near Wall Flows ME 637-Particle-II G. Ahmadi ME


  1. Outline Outline � Reynolds Equation � Reynolds Equation � Eddy Viscosity Models � Eddy Viscosity Models � Mixing Length Model Mixing Length Model � � Near Wall Flows Near Wall Flows � ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi Navier Navier- -Stokes Stokes t ∂ n ⎛ ⎞ ∂ ∂ ∂ ∂ u i = 2 i u u p u o ⎜ ⎟ ρ + = − + µ P i i i 0 u ⎜ ⎟ ∂ d ∂ ∂ ∂ ∂ ∂ j t x x x x x e ⎝ ⎠ x j i j j i i F a Turbulence Turbulence t a Mean y ′ = + Instantaneous t u U u U = ′ u i = i Velocity c u 0 o Velocity i i l e V ′ = + ′ p = p P p P = 0 p t ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi 1

  2. + t T Time Time 1 Properties ′ Properties u i = ∫ p = = 0 ' 0 u lim u dt i i Averaging Averaging → ∞ T T t 0 ′ ′ ′ ′ ′ ′ ≠ ≠ i ≠ +∞ Ensemble Ensemble u u u 0 u u 0 p ' u 0 ∫ < >= u d u i j k i j u u f ( ) i i Averaging Averaging − ∞ ′ ∂ i = u =< >= Ergodicity Ergodicity ′ ′ = = u u U U u U u 0 0 i i i ∂ i j i j x j ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi Reynolds Equation Reynolds Equation Reynolds Equation Reynolds Equation ⎛ ⎞ ′ ′ ∂ ∂ ∂ ∂ ∂ ⎛ ⎞ ⎡ ⎤ ∂ 2 ∂ ∂ ∂ ∂ u u U U P U U U U U ⎜ ⎟ ⎜ ⎟ ρ + = − + µ − ρ ′ ′ i j ρ + = − δ + µ + − ρ i i i ⎢ j ⎥ i i i U U P ( ) u u ⎜ ⎟ ⎜ ⎟ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ j j ij i j ⎢ ⎥ t x x x x t x x x x x ⎝ ⎠ ⎣ ⎦ ⎝ ⎠ j j j i j i j j j ∂ i = Turbulence Turbulence U ⎛ ⎞ ′ ′ ′ ′ ′ 0 − ρ − ρ − ρ 2 u u v u w ∂ ⎜ ⎟ Stress Stress x i ⎜ ⎟ = − ρ ′ ′ − ρ ′ − ρ ′ ′ τ T 2 u v v v w ⎜ ⎟ Turbulence Turbulence Reynolds Reynolds ′ ′ τ = − ρ = τ ⎜ ′ ′ ′ ′ ′ ⎟ T T − ρ − ρ − ρ 2 u u u w v w w ⎝ ⎠ Stress Stress Stress Stress ij i j ji ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi 2

  3. y Prandtl Assumption Prandtl Assumption Boussineq Boussineq Eddy Viscosity Model Eddy Viscosity Model U 1 1 dU ⎛ ⎞ ′ ′ ∂ ′ ′ 2 2 l ρ ∂ 2 2 ( u ) ~ ( v ) ~ U u u U l ⎜ ⎟ dy τ = − δ + µ + j T k k i ⎜ ⎟ ∂ ∂ ij ij T 3 x x ⎝ ⎠ l ′ ′ τ = − ρ j i T u v Ludwig Prandtl Ludwig Prandtl Eddy Eddy Mixing Mixing ∂ ∂ µ = ρν U U τ = ρ T 2 Viscosity Length l Viscosity Length T T ∂ y dy dU von von Eddy ∂ Eddy dy = κ U l ∂ τ = τ = ρν U Karman T T Karman 2 υ = d U Viscosity Viscosity l 2 ∂ 12 T ∂ y T 2 y dy ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi Inertial Inertial Turbulent Stress=Wall Shear Stress Turbulent Stress=Wall Shear Stress Shear Velocity Shear Velocity Sublayer Sublayer τ 2 * ⎛ ∂ ⎞ Inertial Inertial dU u = U * = 0 u τ = ρκ ⎜ ⎟ 2 2 Sublayer Sublayer y ⎜ ⎟ ρ κ ∂ 0 ⎝ ⎠ y dy y Turbulence Turbulence y Scales Scales U 1 = + = + U ln y c κ * τ u = κ l y o B ≈ * 5 u y Wall Wall + = 1 y + = + + U ln y B ν Units Units κ = von Karman von Karman κ 0 . 4 constant constant + < ≤ von von Karman Karman 30 y 300 ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi 3

  4. + Turbulent stress is negligible < ≤ Turbulent stress is negligible 0 y 5 30 dU τ = µ + U 0 dy 20 + + = + U 2 . 5 ln y 5 . 5 dU 2 = ν * u 10 dy + = y + + = y U + + + dU U = y 12 30 300 1 + dy ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi � Reynolds Equation Reynolds Equation � � Eddy Viscosity Models � Eddy Viscosity Models � Mixing Length Model Mixing Length Model � � Near Wall Flows Near Wall Flows � ME 637-Particle-II G. Ahmadi ME 637-Particle-II G. Ahmadi 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend